Clinical Trials Logo

Sezary Syndrome clinical trials

View clinical trials related to Sezary Syndrome.

Filter by:

NCT ID: NCT00748319 Completed - Dermatitis Clinical Trials

Killer Immunoglobulin-Like Receptor Transcripts Expression for the Diagnosis of Epidermotropic Cutaneous T Cell Lymphoma

KIR
Start date: March 2009
Phase: N/A
Study type: Interventional

The most frequent cutaneous T-cell lymphomas (CTCL) are mycosis fungoid and Sezary syndrome. The diagnosis of these lymphomas is difficult using current methods, especially because numerous benign dermatological conditions can mimick CTCL both clinically and under microscopic examination. Recently, the KIR receptor CD158k has been shown to be a marker for Sezary syndrome in both the blood and skin. We hypothesize that other receptors from the same family may help fro the diagnosis of these lymphomas. To address this issue, we will study the expression of all known KIR receptor in the skin of patients presenting with a skin eruption, which may correspond to either a cutaneous T-cell lymphoma or a benign dermatological disease. The final diagnosis will be established by a panel of experts, allowing constitution of 2 groups of patients : the cutaneous T-cell lymphoma group, and the benign inflammatory disease group. The expression of the different KIRs will be analyzed in both group in a blinded fashion, in order to determine whether one or a several KIRs may be differentially expressed.

NCT ID: NCT00611208 Completed - Mycosis Fungoides Clinical Trials

A-dmDT390-bisFv(UCHT1) Immunotoxin Therapy for Patients With Cutaneous T-Cell Lymphoma (CTCL)

Start date: January 2008
Phase: Phase 2
Study type: Interventional

This is a Phase II clinical trial aimed at treating a subgroup of patients with cutaneous T-cell lymphoma. The drug consists of a toxin, called diphtheria toxin, which is attached to an antibody that can specifically target cancerous T-cells. Our primary objectives are, therefore, to determine the patient subgroup with respect to disease burden who best responds to this experimental drug in treating CD3 positive T cell malignancies. We will be determining how the patient and their disease respond to this research agent. The Clinical Response Data analysis from October 2014 done at the completion of the Phase I portion of A-dmT390-bisFv(UCHT1) fusion protein clinical trial showed that there were 25 evaluable patients who received all 8 doses varying between 2.5 and 11.25 µg/kg per dose. There were responses at all the lower dose levels up to 7.5 µg/kg per dose. The overall response rate was 36% and the complete response rate was 16% (when followed for 6 months). We have identified a subgroup of CTCL patients that have a very high response rate. If we exclude patients whose mSWAT scores never exceeded 50 (50% of skin surface area times a multiplier) and who never had lymph node involvement or stage III disease we are left with 9 patients. This subgroup has an overall response rate of 89% and a complete response rate of 50% (when followed for 6 months). Of these 4 patients currently in complete remission, three are long-term responders. Two are over 6 years in duration and one over 5 years duration. These may represent cures. The long time periods in the transition from partial response to complete response without treatment, 6 months to two years, suggests that the study drug in addition to exerting a direct killing effect on tumor also functions as an immunomodulator.

NCT ID: NCT00608361 Completed - Clinical trials for Chronic Lymphocytic Leukemia

Dasatinib in Treating Patients With Solid Tumors or Lymphomas That Are Metastatic or Cannot Be Removed By Surgery

Start date: October 2008
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT00601718 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Vorinostat, Rituximab, Ifosfamide, Carboplatin, and Etoposide in Treating Patients With Relapsed or Refractory Lymphoma or Previously Untreated T-Cell Non-Hodgkin Lymphoma or Mantle Cell Lymphoma

Start date: December 2007
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial is studying the side effects and best dose of vorinostat when given together with rituximab, ifosfamide, carboplatin, and etoposide and to see how well they work in treating patients with relapsed or refractory lymphoma or previously untreated T-cell non-Hodgkin lymphoma or mantle cell lymphoma. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with rituximab and combination chemotherapy may kill more cancer cells

NCT ID: NCT00499811 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Vorinostat in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma and Liver Dysfunction

Start date: June 2007
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat in treating patients with metastatic or unresectable solid tumors or lymphoma and liver dysfunction. (closed for accrual as of 04/05/2010) Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Vorinostat may have different effects in patients who have changes in their liver function.

NCT ID: NCT00489203 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Beclomethasone Dipropionate in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

Start date: April 2007
Phase: Phase 2
Study type: Interventional

RATIONALE: Beclomethasone dipropionate may be effective in preventing acute graft-versus-host disease in patients undergoing a stem cell transplant for hematologic cancer. PURPOSE: This randomized phase II trial is studying how well beclomethasone dipropionate works in preventing acute graft-versus-host disease in patients undergoing a donor stem cell transplant for hematologic cancer.

NCT ID: NCT00466921 Completed - Lymphoma Clinical Trials

Lenalidomide in Treating Patients With Relapsed Mycosis Fungoides/Sezary Syndrome

Start date: April 19, 2005
Phase: Phase 2
Study type: Interventional

RATIONALE: Lenalidomide may stop the growth of mycosis fungoides/Sezary syndrome by blocking blood flow to the cancer. PURPOSE: This phase II trial is studying how well lenalidomide works in treating patients with relapsed mycosis fungoides/Sezary syndrome.

NCT ID: NCT00458731 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Bevacizumab and Cediranib Maleate in Treating Patients With Metastatic or Unresectable Solid Tumor, Lymphoma, Intracranial Glioblastoma, Gliosarcoma or Anaplastic Astrocytoma

Start date: May 2007
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of bevacizumab and cediranib maleate in treating patients with metastatic or unresectable solid tumor, lymphoma, intracranial glioblastoma, gliosarcoma or anaplastic astrocytoma. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Cediranib maleate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bevacizumab and cediranib maleate may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving bevacizumab together with cediranib maleate may kill more cancer cells.

NCT ID: NCT00408681 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Lithium Carbonate in Treating Patients With Acute Intestinal Graft-Versus-Host-Disease After Donor Stem Cell Transplant

Start date: June 2006
Phase: N/A
Study type: Interventional

RATIONALE: Lithium carbonate may be an effective treatment for intestinal graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying lithium carbonate in treating patients with acute intestinal graft-versus-host-disease after donor stem cell transplant.

NCT ID: NCT00369629 Terminated - Lymphoma Clinical Trials

Gemcitabine and Pemetrexed Disodium in Treating Patients With Advanced Mycosis Fungoides or Sézary Syndrome

Start date: August 28, 2006
Phase: Phase 1
Study type: Interventional

RATIONALE: Drugs used in chemotherapy, such as gemcitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Pemetrexed disodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving gemcitabine together with pemetrexed disodium may kill more cancer cells. PURPOSE: This was planned as a phase I/II trial studying the side effects and determining the best dose of gemcitabine hydrochloride when given together with pemetrexed disodium. Unfortunately, due to a lack of funding, the phase II portion was never conducted.