View clinical trials related to Sezary Syndrome.
Filter by:This phase Ib/II trial identifies the best dose and possible benefits and/or side effects of magrolimab when given in combination with mogamulizumab in treating patients with stage IB-IV mycosis fungoides or Sezary syndrome types of T-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Magrolimab and mogamulizumab are monoclonal antibodies that may interfere with the ability of cancer cells to grow and spread. Treatment with magrolimab in combination with mogamulizumab may stabilize cancer for longer period than the usual treatment in patients with relapsed/refractory T-cell lymphoma who have been previously treated.
This phase II trial studies how well letermovir works for the prevention of cytomegalovirus reactivation in patients with hematological malignancies treated with alemtuzumab. Patients receiving treatment with alemtuzumab may experience cytomegalovirus reactivation. Letermovir may block cytomegalovirus replication and prevent infection.
This is an open label, multi-cohort, and multi-center phase II study, which evaluates the clinical activity and safety of IPH4102 in Sezary Syndrome and Mycosis fungoides as single agent.
This phase II trial studies how well pembrolizumab works in treating patients with stage IB-IV mycosis fungoides. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
Trial Subjects (patients), will receive single infusions of pembrolizumab every 3 weeks until disease progression or unacceptable toxicity develops. They will receive radiotherapy at week 12.
This phase II trial studies how well talimogene laherparepvec and nivolumab work in treating patients with lymphomas that do not responded to treatment (refractory) or non-melanoma skin cancers that have spread to other places in the body (advanced) or do not responded to treatment. Biological therapies, such as talimogene laherparepvec, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving talimogene laherparepvec and nivolumab may work better compared to usual treatments in treating patients with lymphomas or non-melanoma skin cancers.
The purpose of this study is to determine whether resminostat will be able to delay or prevent worsening of disease in patients with advanced stage mycosis fungoides or Sézary Syndrome that have recently achieved disease control with previous systemic therapy.
In the proposed study, NM-IL-12 will be evaluated as immunotherapy to increase antitumor efficacy against CTCL, while reducing skin-related toxicity, when combined with low-dose TSEBT therapy. Determination of the maximum tolerated dose (MTD) for NM-IL-12 is not planned in this study, rather, a pre-defined starting dose will be explored; this dose is based on two safety and tolerability studies of NM-IL-12 in healthy volunteers.
The purpose of this study is to evaluate how safe and effective the combination of the study drugs romidepsin and lenalidomide is for treating patients with peripheral t-cell lymphoma (PTCL) who have not been previously treated for this cancer. Currently, there is no standard treatment for patients with PTCL; the most common treatment used is a combination of drugs called CHOP, but this can be a difficult treatment to tolerate because of side effects, and is not particularly effective for most patients with PTCL. Romidepsin (Istodax®) is a type of drug called an HDAC inhibitor. It interacts with DNA (genetic material in cells) in ways that can stop tumors from growing. It is given as an infusion through the veins. Lenalidomide (Revlimid®) is a type of drug known as an immunomodulatory drug, or IMID for short. This drug affects how tumor cells grow and survive, including affecting blood vessel growth in tumors. It is given as an oral tablet (by mouth).
The purpose of this study is to learn the effects of an investigational medication, SGN 35, on patients with mycosis fungoides. Despite a wide range of therapeutic options, the treatments are associated with short response duration, thus this condition is largely incurable. This investigational drug may offer less toxicity than standard treatments and have better tumor specific targeting.