View clinical trials related to Severe Congenital Neutropenia.
Filter by:Newborn screening (NBS) is a global initiative of systematic testing at birth to identify babies with pre-defined severe but treatable conditions. With a simple blood test, rare genetic conditions can be easily detected, and the early start of transformative treatment will help avoid severe disabilities and increase the quality of life. Baby Detect Project is an innovative NBS program using a panel of target sequencing that aims to identify 126 treatable severe early onset genetic diseases at birth caused by 361 genes. The list of diseases has been established in close collaboration with the Paediatricians of the University Hospital in Liege. The investigators use dedicated dried blood spots collected between the first day and 28 days of life of babies, after a consent sign by parents.
Severe congenital neutropenia (SCN) is a group of primary immunodeficiencies caused by distinct gene mutations and characterized by neutrophil maturation impairment, which leads to neutropenia, predisposition to severe bacterial and fungal infections, and myeloid malignancies. Granulocyte-colony stimulation factor is used for pathogenetic therapy, however, no adequate response is seen in some patients. The only curative option for SCN is hematopoietic stem cell transplantation (HSCT). An indication for HSCT in SCN is: no adequate response to G-CSF therapy, or development of malignancies, or found unfavorable mutations of SCN genes, leading to poor response to G-CSF and high risk of malignant transformation. One of the major peculiarities of HSCT in SCN is a high risk of graft failure. That was described in few studies in SCN transplantation and was also observed in our SCN HSCT cohort. We also consider the role of TCRab/CD19 graft depletion, which is routinely used in our center for GVHD prophylaxis in increased risks of graft failure. Another problem often observed in our patients is the relatively high risks of death of infections, developed after graft failure. Due to predominantly early HSCT graft failure development, non-sufficient immuablation is presumed as the main reason for graft failure. Because of the low level of toxicity, associated with TCRab/CD19 depletion usage, this strategy is planned to be used in the current study. To increase an immunoablative potential of conditioning regimen in SCN, total lymphoid irradiation will be studied in combination with myeloablative agents and standardly used serotherapy.
The purpose of this study is to collect and store samples and health information for current and future research to learn more about the causes and treatment of blood diseases. This is not a therapeutic or diagnostic protocol for clinical purposes. Blood, bone marrow, hair follicles, nail clippings, urine, saliva and buccal swabs, left over tissue, as well as health information will be used to study and learn about blood diseases by using genetic and/or genomic research. In general, genetic research studies specific genes of an individual; genomic research studies the complete genetic makeup of an individual. It is not known why many people have blood diseases, because not all genes causing these diseases have been found. It is also not known why some people with the same disease are sicker than others, but this may be related to their genes. By studying the genomes in individuals with blood diseases and their family members, the investigators hope to learn more about how diseases develop and respond to treatment which may provide new and better ways to diagnose and treat blood diseases. Primary Objective: - Establish a repository of DNA and cryopreserved blood cells with linked clinical information from individuals with non-malignant blood diseases and biologically-related family members, in conjunction with the existing St. Jude biorepository, to conduct genomic and functional studies to facilitate secondary objectives. Secondary Objectives: - Utilize next generation genomic sequencing technologies to Identify novel genetic alternations that associate with disease status in individuals with unexplained non-malignant blood diseases. - Use genomic approaches to identify modifier genes in individuals with defined monogenic non-malignant blood diseases. - Use genomic approaches to identify genetic variants associated with treatment outcomes and toxicities for individuals with non-malignant blood disease. - Use single cell genomics, transcriptomics, proteomics and metabolomics to investigate biomarkers for disease progression, sickle cell disease (SCD) pain events and the long-term cellular and molecular effects of hydroxyurea therapy. - Using longitudinal assessment of clinical and genetic, study the long-term outcomes and evolving genetic changes in non-malignant blood diseases. Exploratory Objectives - Determine whether analysis of select patient-derived bone marrow hematopoietic progenitor/stem (HSPC) cells or induced pluripotent stem (iPS) cells can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms. - Determine whether analysis of circulating mature blood cells and their progenitors from selected patients with suspected or proven genetic hematological disorders can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms.
This is a study to collect the outcomes of stem cell transplantation for patients with hematologic diseases other than cancer.
This study's goal is to determine the frequency and severity of acute graft versus host disease, to evaluate incidence of primary and secondary graft rejection, to assess event free survival and overall survival, to determine the time to neutrophil and platelet engraftment, to determine the time to immune reconstitution (including normalization of T, B and natural killer (NK) cell repertoire and Immunoglobulin G production), and to establish the incidence of infectious complications including bacterial, viral, fungal and atypical mycobacterial and other infections following CD34+ selection in children, adolescents and young adults receiving an allogeneic peripheral blood stem cell transplant from a family member or unrelated adult donor for a non-malignant disease.
This is a single arm, phase I study to assess the tolerability of abatacept when combined with cyclosporine and mycophenolate mofetil as graft versus host disease prophylaxis in children undergoing unrelated hematopoietic stem cell transplant for serious non-malignant diseases as well as to assess the immunological effects of abatacept. Participants will be followed for 2 years.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
Allogeneic blood and marrow transplantation remains the only viable cure for children who suffer from many serious non-malignant hematological diseases. Transplantation, however, carries a high risk of fatal complications. Much of the risk stems from the use of high dose radiation and chemotherapy for conditioning, the treatment administered just prior to transplant that eliminates the patients' marrow and immune system, effectively preventing rejection of the donors' cells. Attempts to make blood and marrow transplantation safer for children with non-malignant diseases by using lower doses of radiation and chemotherapy have largely failed because of a high rate of graft rejection. In many such cases, it is likely that the graft is rejected because the recipient is sensitized to proteins on donor cells, including bone marrow cells, by blood transfusions. The formation of memory immune cells is a hallmark of sensitization, and these memory cells are relatively insensitive to chemotherapy and radiation. Alefacept, a drug used to treat psoriasis, on the other hand, selectively depletes these cells. The investigators are conducting a pilot study to begin to determine whether incorporating alefacept into a low dose conditioning regimen can effectively mitigate sensitization and, thereby, prevent rejection of allogeneic blood and marrow transplants for multiply transfused children with non-malignant hematological diseases.
RATIONALE: Drugs used in chemotherapy, such as busulfan and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. A donor peripheral blood, bone marrow , or umbilical cord blood transplant may be able to replace blood-forming cells that were destroyed by chemotherapy. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before the transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the side effects of busulfan, antithymocyte globulin, and fludarabine when given together with a donor stem cell transplant in treating young patients with blood disorders, bone marrow disorders, chronic myelogenous leukemia in first chronic phase, or acute myeloid leukemia in first remission.
RATIONALE: Monoclonal antibodies, such as alemtuzumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as fludarabine and busulfan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. A peripheral stem cell, bone marrow , or umbilical cord blood transplant may be able to replace blood-forming cells that were destroyed by chemotherapy. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine together with methotrexate and methylprednisolone may stop this from happening. PURPOSE: This phase II trial is studying how well giving alemtuzumab together with fludarabine and busulfan works when given before donor stem cell transplant in treating young patients with hematologic disorders.