Clinical Trials Logo

Clinical Trial Summary

RATIONALE: It has been shown that about 30% of patients do not respond to immunosuppressive therapy or experience recurrence, and graft rejection and graft-versus-host-disease (GVHD) decrease event-free survival to 30% to 50% in the alternative donor (matched unrelated, partially matched family member) transplantation. Although an overall and disease free survival of 85% to 100%, can be obtained in allogeneic blood or bone marrow stem cell transplantation using an human leukocyte antigen (HLA) matched sibling donor, only about 25% of patients have such a donor.

PURPOSE: In an attempt to avoid GVHD, reduce earlier infection rate and decrease regimen-related toxicity while maintaining better engraftment, this study is to evaluate the effectiveness and safety of patient's own adipose-derived mesenchymal stem cell (AD-MSC) or AD-MSC transdifferentiated HSC (AD-HSC) transplant after an immunosuppressive regimen in treating patients who have severe aplastic anemia.

The patient will be in the study for one year for observation and active monitoring. After treatment and active monitoring are over, the patient's medical condition will be followed indefinitely. The principle measures of safety and efficacy will be :

1. Patient survival probability at 3 months, 6 months and 1 year.

2. Engraftment at 3 months, 6 months and 1 year

3. Incidence of graft versus host disease (GVHD), incidence of acute and chronic GVHD and Incidence of earlier infection rate as well as other complications within 6 months and 1 years.


Clinical Trial Description

Severe aplastic anemia is characterized by severe deficiencies in peripheral-blood platelets, white cells, and red cells. These defects in mature cells occur because aplastic bone marrow contains severely reduced numbers of hematopoietic stem cells. To date, Hematopoietic stem cell (HSC) transplants are routinely used to treat patients with many different diseases, including various cancers and blood disorders, such as aplastic anemia. The main sources of HSCs are bone marrow, cord blood and peripheral blood. However, challenges include obtaining enough functional HSCs to ensure optimal engraftment, and avoiding immune rejection and other complications associated with allogeneic transplantations. Novel abundant sources of clinical-grade HSCs are therefore being sought.

Our novel studies have demonstrated that adipose-derived mesenchymal stem cells (AD-MSCs) can be converted rapidly (in 4 days) into AD-HSCs on a large scale (2X108-9 cluster of differentiation 34(CD34)positive cells) by transfection of small RNAs to the the early region 1A (E1A)-like inhibitor of differentiation 1 (EID1) in the presence of specific cytokines. In vitro, AD-HSCs expanded efficiently and resembled cord-blood HSCs in phenotype, genotype, and colony-forming ability. In a mouse model, primary and secondary transplantation analysis and repopulating assays showed that AD-HSCs homed to the bone marrow, differentiated into functional blood cells, and showed a long-term ability to self-renew. we show that adipose-derived mesenchymal stem cells (AD-MSCs) can be converted into AD-HSCs by transfection of small RNAs to the E1A-like inhibitor of differentiation 1 (EID1) in the presence of specific cytokines. In vitro, AD-HSCs expanded efficiently and resembled cord-blood HSCs in phenotype, genotype, and colony-forming ability. In a mouse model, primary and secondary transplantation analysis and repopulating assays showed that AD-HSCs homed to the bone marrow, differentiated into functional blood cells, and showed a long-term ability to self-renew. In the safety aspect, we saw no evidence of leukemia, teratoma and other cancers in the blood, testes and subcutaneous tissues of transplanted mice. More importantly, our preliminary data have shown that AD-HSCs can reconstitute hematopoietic function in five patients with severe aplastic anemia. Based on these premilitary studies,, we have determined to conduct a further clinical investigation in multiple medical centers. In this study we plan to enroll up to 90 patients, to make a comprehensive assessment for this new treatment regimen and to show it is equal or superior to the current immunosuppressive regimen. Patients will be in the study for one years for treatment and active monitoring. All patients will be followed until death. ;


Study Design

Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT02407470
Study type Interventional
Source Navy General Hospital, Beijing
Contact James Q Yin, M.D.,Ph.D.
Phone 86-01-84008003
Email Jamesyin2010@126.com
Status Recruiting
Phase Phase 1/Phase 2
Start date January 2015
Completion date July 2017

See also
  Status Clinical Trial Phase
Recruiting NCT02828592 - Haploidentical Bone Marrow Transplant With Post-Transplant Cyclophosphamide for Patients With Severe Aplastic Anemia Phase 2
Completed NCT02833805 - NMA Haplo or MUD BMT for Newly Diagnosed Severe Aplastic Anemia Phase 2
Terminated NCT01319851 - Alefacept and Allogeneic Hematopoietic Stem Cell Transplantation N/A
Completed NCT00004143 - Allogeneic Mixed Chimerism Stem Cell Transplant Using Campath for Hemoglobinopathies & Bone Marrow Failure Syndromes Phase 2
Recruiting NCT05012111 - Natural History of Acquired and Inherited Bone Marrow Failure Syndromes
Recruiting NCT03836690 - Transfer of Effector Memory T Cells (Tem) Following Allogeneic Stem Cell Transplantation Phase 1
Recruiting NCT06039436 - Conditioning Regimen Containing Low Dose ATG for The Treatment of Acquired SAA Receiving sUCBT
Enrolling by invitation NCT05049668 - RACE 2: a Long Term Follow-up of Patients Participating in the RACE Trial
Recruiting NCT01472055 - Pharmacokinetic Study of Fludarabine in Pediatric Hematopoietic Stem Cell Transplantation Phase 2
Recruiting NCT01351545 - A Multicenter Access and Distribution Protocol for Unlicensed Cryopreserved Cord Blood Units (CBUs)
Completed NCT01703169 - Efficacy and Safety of Eltrombopag In Patients With Severe and Very Severe Aplastic Anemia Phase 2
Withdrawn NCT01129323 - Reduced-Intensity Preparative Regimen for Allogeneic Stem Cell Transplantation in Patients With Severe Aplastic Anemia N/A
Completed NCT00516152 - Phase II Study Evaluating Busulfan and Fludarabine as Preparative Therapy in Adults With Hematopoietic Disorders Undergoing MUD SCT Phase 2
Recruiting NCT06069180 - The Optimization of Conditioning Regimen for HLA Matched HSCT in SAA Phase 4
Recruiting NCT03579875 - Alpha/Beta TCD HCT in Patients With Inherited BMF Disorders Phase 2
Recruiting NCT05720234 - Avatrombopag Combined With IST as First-line Treatment for SAA Phase 2
Recruiting NCT04304820 - Early Initiation of Oral Therapy With Cyclosporine and Eltrombopag for Treatment Naive Severe Aplastic Anemia (SAA) Phase 2
Terminated NCT00358657 - Fludarabine Phosphate, Cyclophosphamide, and Total-Body Irradiation Followed by Donor Bone Marrow Transplant and Cyclophosphamide, Mycophenolate Mofetil, Tacrolimus, and Sirolimus in Treating Patients With Primary Immunodeficiency Disorders or Noncancerous Inherited Disorders Phase 2
Completed NCT02998645 - Eltrombopag Combined With Cyclosporine as First Line Therapy in Patients With Severe Acquired Aplastic Anemia Phase 2
Active, not recruiting NCT03825744 - Hetrombopag or Placebo in Treatment-Naive Severe Aplastic Anemia Phase 3