Septic Shock Clinical Trial
— eMESHOfficial title:
Energy MEtabolism of Septic Heart.
A flexible energy metabolism matched with the contractile needs of the muscle is essential to a normal heart. Loss of metabolic flexibility and cardiac systolic efficiency coexist in Sepsis-induced Myocardial Dysfunction (SIMD), a phenomenon attributed to mitochondrial dysfunction and mishandling of energy substrates. Cardiac positron emission tomography (PET) could allow to quantify non invasively the selection of energy substrates by the hearts in sepsis and will be associated in parallel with functional status (ultrasound cardiography), injury biomarkers, apelinergic and metabolomic blood profiles. Comparisons will be performed between septic and acute on chronic heart failures, with or without systolic dysfunction.
Status | Recruiting |
Enrollment | 32 |
Est. completion date | July 21, 2024 |
Est. primary completion date | December 21, 2023 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Patients hospitalized in intensive care unit and coronary unit of the Sherbrooke hospital/CHUS. - Accepts healthy volunteers: 4 to 6 age- and sex-matched HV will be recruited and imaged at the end of the inclusion window for the assessment of cardiac energy tracer's uptake and as ref. controls. Exclusion Criteria: - Pediatric patients - Albumin allergy - Moribund patients - Patients too much unstable for the imaging procedure (clinical judgment) - Unavailable tracers, staff, PET scan in a maximum delay of 72 hours |
Country | Name | City | State |
---|---|---|---|
Canada | CHUS | Sherbrooke | Quebec |
Lead Sponsor | Collaborator |
---|---|
Centre de recherche du Centre hospitalier universitaire de Sherbrooke |
Canada,
Alfarano C, Foussal C, Lairez O, Calise D, Attane C, Anesia R, Daviaud D, Wanecq E, Parini A, Valet P, Kunduzova O. Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin. Int J Obes (Lond). 2015 Feb;39(2):312-20. do — View Citation
Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F, Scolletta S. Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. J Crit Care. 2014 Aug;29(4):500-11. doi: 10.1016/j.jcrc.2014.03.028. Epub 2014 Apr 5. — View Citation
Banks L, Wells GD, McCrindle BW. Cardiac energy metabolism is positively associated with skeletal muscle energy metabolism in physically active adolescents and young adults. Appl Physiol Nutr Metab. 2014 Mar;39(3):363-8. doi: 10.1139/apnm-2013-0312. Epub — View Citation
Berry MF, Pirolli TJ, Jayasankar V, Burdick J, Morine KJ, Gardner TJ, Woo YJ. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation. 2004 Sep 14;110(11 Suppl 1):II187-93. doi: 10.1161/01.CIR.0000138382.57325.5c. — View Citation
Bertrand C, Valet P, Castan-Laurell I. Apelin and energy metabolism. Front Physiol. 2015 Apr 10;6:115. doi: 10.3389/fphys.2015.00115. eCollection 2015. — View Citation
Bouhemad B, Nicolas-Robin A, Arbelot C, Arthaud M, Feger F, Rouby JJ. Acute left ventricular dilatation and shock-induced myocardial dysfunction. Crit Care Med. 2009 Feb;37(2):441-7. doi: 10.1097/CCM.0b013e318194ac44. — View Citation
Bouhemad B, Nicolas-Robin A, Arbelot C, Arthaud M, Feger F, Rouby JJ. Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit Care Med. 2008 Mar;36(3):766-74. doi: 10.1097/CCM.0B013E31816596BC. — View Citation
Carre JE, Singer M. Cellular energetic metabolism in sepsis: the need for a systems approach. Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):763-71. doi: 10.1016/j.bbabio.2008.04.024. Epub 2008 Apr 23. — View Citation
Chagnon F, Bentourkia M, Lecomte R, Lessard M, Lesur O. Endotoxin-induced heart dysfunction in rats: assessment of myocardial perfusion and permeability and the role of fluid resuscitation. Crit Care Med. 2006 Jan;34(1):127-33. doi: 10.1097/01.ccm.0000190 — View Citation
Chagnon F, Coquerel D, Salvail D, Marsault E, Dumaine R, Auger-Messier M, Sarret P, Lesur O. Apelin Compared With Dobutamine Exerts Cardioprotection and Extends Survival in a Rat Model of Endotoxin-Induced Myocardial Dysfunction. Crit Care Med. 2017 Apr;4 — View Citation
Chagnon F, Metz CN, Bucala R, Lesur O. Endotoxin-induced myocardial dysfunction: effects of macrophage migration inhibitory factor neutralization. Circ Res. 2005 May 27;96(10):1095-102. doi: 10.1161/01.RES.0000168327.22888.4d. Epub 2005 May 5. — View Citation
Chamberland C, Barajas-Martinez H, Haufe V, Fecteau MH, Delabre JF, Burashnikov A, Antzelevitch C, Lesur O, Chraibi A, Sarret P, Dumaine R. Modulation of canine cardiac sodium current by Apelin. J Mol Cell Cardiol. 2010 Apr;48(4):694-701. doi: 10.1016/j.y — View Citation
Coquerel D, Chagnon F, Sainsily X, Dumont L, Murza A, Cote J, Dumaine R, Sarret P, Marsault E, Salvail D, Auger-Messier M, Lesur O. ELABELA Improves Cardio-Renal Outcome in Fatal Experimental Septic Shock. Crit Care Med. 2017 Nov;45(11):e1139-e1148. doi: — View Citation
Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Dall'Ava-Santucci J, Brunet F, Villemant D, Carli A, Raichvarg D. Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circ — View Citation
Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013 Aug 30;113(6):709-24. doi: 10.1161/CIRCRESAHA.113.300376. — View Citation
Drosatos K, Lymperopoulos A, Kennel PJ, Pollak N, Schulze PC, Goldberg IJ. Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr Heart Fail Rep. 2015 Apr;12(2):130-40. doi: 10.1007/s11897-014-0247-z. — View Citation
Duncan DJ, Yang Z, Hopkins PM, Steele DS, Harrison SM. TNF-alpha and IL-1beta increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. Cell Calcium. 2010 Apr;47(4):378-86. doi: 10.1016/j.ceca.2010.02 — View Citation
Ehrman RR, Sullivan AN, Favot MJ, Sherwin RL, Reynolds CA, Abidov A, Levy PD. Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature. Crit Care. 2018 May 4;22(1):112. doi: 10.1186/s13054-018-2043-8. — View Citation
Farkasfalvi K, Stagg MA, Coppen SR, Siedlecka U, Lee J, Soppa GK, Marczin N, Szokodi I, Yacoub MH, Terracciano CM. Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun. 2007 Jun 15;357(4):889-95. doi: 1 — View Citation
Feng J, Zhao H, Du M, Wu X. The effect of apelin-13 on pancreatic islet beta cell mass and myocardial fatty acid and glucose metabolism of experimental type 2 diabetic rats. Peptides. 2019 Apr;114:1-7. doi: 10.1016/j.peptides.2019.03.006. Epub 2019 Apr 4. — View Citation
Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, Angus DC, Reinhart K; International Forum of Acute Care Trialists. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am — View Citation
Frier BC, Williams DB, Wright DC. The effects of apelin treatment on skeletal muscle mitochondrial content. Am J Physiol Regul Integr Comp Physiol. 2009 Dec;297(6):R1761-8. doi: 10.1152/ajpregu.00422.2009. Epub 2009 Sep 30. — View Citation
Gertz EW, Wisneski JA, Stanley WC, Neese RA. Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. J Clin Invest. 1988 Dec;82(6):2017-25. doi: 10.1172/JCI113822. — View Citation
Hartmann C, Radermacher P, Wepler M, Nussbaum B. Non-Hemodynamic Effects of Catecholamines. Shock. 2017 Oct;48(4):390-400. doi: 10.1097/SHK.0000000000000879. — View Citation
Hou T, Zhang R, Jian C, Ding W, Wang Y, Ling S, Ma Q, Hu X, Cheng H, Wang X. NDUFAB1 confers cardio-protection by enhancing mitochondrial bioenergetics through coordination of respiratory complex and supercomplex assembly. Cell Res. 2019 Sep;29(9):754-766 — View Citation
Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T. Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care. 2016 Mar 23;4:22. doi: 10.1186/s40560-016-0148-1. eCollection 2016. — View Citation
Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of Metabolic Flexibility in the Failing Heart. Front Cardiovasc Med. 2018 Jun 6;5:68. doi: 10.3389/fcvm.2018.00068. eCollection 2018. — View Citation
Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med. 1993 Jul;21(7):1012-9. doi: 10.1097/00003246-199307000-00015. — View Citation
Krishnagopalan S, Kumar A, Parrillo JE, Kumar A. Myocardial dysfunction in the patient with sepsis. Curr Opin Crit Care. 2002 Oct;8(5):376-88. doi: 10.1097/00075198-200210000-00003. — View Citation
Kumar A, Bunnell E, Lynn M, Anel R, Habet K, Neumann A, Parrillo JE. Experimental human endotoxemia is associated with depression of load-independent contractility indices: prevention by the lipid a analogue E5531. Chest. 2004 Sep;126(3):860-7. doi: 10.13 — View Citation
Levy RJ, Piel DA, Acton PD, Zhou R, Ferrari VA, Karp JS, Deutschman CS. Evidence of myocardial hibernation in the septic heart. Crit Care Med. 2005 Dec;33(12):2752-6. doi: 10.1097/01.ccm.0000189943.60945.77. — View Citation
Li Z, He Q, Wu C, Chen L, Bi F, Zhou Y, Shan H. Apelin shorten QT interval by inhibiting Kir2.1/IK1 via a PI3K way in acute myocardial infarction. Biochem Biophys Res Commun. 2019 Sep 17;517(2):272-277. doi: 10.1016/j.bbrc.2019.07.041. Epub 2019 Jul 23. — View Citation
Lopaschuk GD. Metabolic Modulators in Heart Disease: Past, Present, and Future. Can J Cardiol. 2017 Jul;33(7):838-849. doi: 10.1016/j.cjca.2016.12.013. Epub 2016 Dec 21. — View Citation
Mangmool S, Denkaew T, Parichatikanond W, Kurose H. beta-Adrenergic Receptor and Insulin Resistance in the Heart. Biomol Ther (Seoul). 2017 Jan 1;25(1):44-56. doi: 10.4062/biomolther.2016.128. — View Citation
Masse MH, Richard MA, D'Aragon F, St-Arnaud C, Mayette M, Adhikari NKJ, Fraser W, Carpentier A, Palanchuck S, Gauthier D, Lanthier L, Touchette M, Lamontagne A, Chenard J, Mehta S, Sansoucy Y, Croteau E, Lepage M, Lamontagne F. Early Evidence of Sepsis-As — View Citation
Mehrotra D, Wu J, Papangeli I, Chun HJ. Endothelium as a gatekeeper of fatty acid transport. Trends Endocrinol Metab. 2014 Feb;25(2):99-106. doi: 10.1016/j.tem.2013.11.001. Epub 2013 Dec 3. — View Citation
Merx MW, Weber C. Sepsis and the heart. Circulation. 2007 Aug 14;116(7):793-802. doi: 10.1161/CIRCULATIONAHA.106.678359. — View Citation
Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A, Hyman MC, Rabinowitz JD, Frankel DS, Arany Z. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science. 2020 Oct 16;370(6514):364-368. doi: 10.1126/science.abc8861. — View Citation
Neely JR, Rovetto MJ, Oram JF. Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis. 1972 Nov-Dec;15(3):289-329. doi: 10.1016/0033-0620(72)90029-1. No abstract available. — View Citation
Panitchote A, Thiangpak N, Hongsprabhas P, Hurst C. Energy expenditure in severe sepsis or septic shock in a Thai Medical Intensive Care Unit. Asia Pac J Clin Nutr. 2017;26(5):794-797. doi: 10.6133/apjcn.072016.10. — View Citation
Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med. 1984 Apr;100(4):483-90. doi: 10.7326/0003-4819-100-4-483. — View Citation
Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myoc — View Citation
Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med. 1990 Aug 1;113(3):227-42. doi: 10.7326/0003-4819-113-3-227. — View Citation
Pascual F, Coleman RA. Fuel availability and fate in cardiac metabolism: A tale of two substrates. Biochim Biophys Acta. 2016 Oct;1861(10):1425-33. doi: 10.1016/j.bbalip.2016.03.014. Epub 2016 Mar 16. — View Citation
Reddy YN, Borlaug BA. Heart Failure With Preserved Ejection Fraction. Curr Probl Cardiol. 2016 Apr;41(4):145-88. doi: 10.1016/j.cpcardiol.2015.12.002. Epub 2015 Dec 9. — View Citation
Rudiger A, Dyson A, Felsmann K, Carre JE, Taylor V, Hughes S, Clatworthy I, Protti A, Pellerin D, Lemm J, Claus RA, Bauer M, Singer M. Early functional and transcriptomic changes in the myocardium predict outcome in a long-term rat model of sepsis. Clin S — View Citation
Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007 Jun;35(6):1599-608. doi: 10.1097/01.CCM.0000266683.64081.02. — View Citation
Saleme B, Das SK, Zhang Y, Boukouris AE, Lorenzana Carrillo MA, Jovel J, Wagg CS, Lopaschuk GD, Michelakis ED, Sutendra G. p53-Mediated Repression of the PGC1A (PPARG Coactivator 1alpha) and APLNR (Apelin Receptor) Signaling Pathways Limits Fatty Acid Oxi — View Citation
Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysa J, Toth M, Ruskoaho H. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res. 2002 Sep 6;91(5):434-40 — View Citation
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ; American Heart Association Council on Basic Cardiovascular Sciences. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res. 2016 May 13;118(10):1659-701. doi: 10.1161/RES.0000000000000097. Epub 2016 Mar 24. Erratum In: Circ Res. 2016 May 13;118(10):e35. — View Citation
Tavernier B, Li JM, El-Omar MM, Lanone S, Yang ZK, Trayer IP, Mebazaa A, Shah AM. Cardiac contractile impairment associated with increased phosphorylation of troponin I in endotoxemic rats. FASEB J. 2001 Feb;15(2):294-6. doi: 10.1096/fj.00-0433fje. Epub 2 — View Citation
Tessier JP, Thurner B, Jungling E, Luckhoff A, Fischer Y. Impairment of glucose metabolism in hearts from rats treated with endotoxin. Cardiovasc Res. 2003 Oct 15;60(1):119-30. doi: 10.1016/s0008-6363(03)00320-1. — View Citation
Trager K, Radermacher P. Catecholamines in the treatment of septic shock: effects beyond perfusion. Crit Care Resusc. 2003 Dec;5(4):270-6. — View Citation
Turner A, Tsamitros M, Bellomo R. Myocardial cell injury in septic shock. Crit Care Med. 1999 Sep;27(9):1775-80. doi: 10.1097/00003246-199909000-00012. — View Citation
Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med. 2008 Jun;36(6):1701-6. doi: 10.1097/CCM.0b013e318174db05. — View Citation
Vincent JL, Gris P, Coffernils M, Leon M, Pinsky M, Reuse C, Kahn RJ. Myocardial depression characterizes the fatal course of septic shock. Surgery. 1992 Jun;111(6):660-7. — View Citation
Walley KR. Sepsis-induced myocardial dysfunction. Curr Opin Crit Care. 2018 Aug;24(4):292-299. doi: 10.1097/MCC.0000000000000507. — View Citation
Wu AH. Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med. 2001 Jun;27(6):959-61. doi: 10.1007/s001340100970. No abstract available. — View Citation
* Note: There are 58 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | FDG PET scan | Positron emission tomography with FDG radiotracer. It will report the glucose uptake by the heart. | 25 minutes | |
Primary | Palmitate PET scan | Positron emission tomography with C11-palmitate radiotracer. It will report the fatty acid uptake by the heart. | 15 minutes | |
Primary | Acetate PET scan | Positron emission tomography with C11-acetate radiotracer. It will report the acetate uptake by the heart. | 10 minutes | |
Primary | Quantitative study of blood FDG:palmitate balance. | Measure of the blood FDG:palmitate balance by spectroscopy LC-MS and NMR. | 20 minutes | |
Secondary | Measure of myocardial injury biomarkers. | Measure of blood myocardial injury biomarkers by immuno-enzymatic methods (Troponin T, NT-pro BNP, Galectin 3 | 45 minutes | |
Secondary | Measure of apelinergics. | Measure of blood apelinergics (apelin-13 ,apelin-17, apelin-36 and ELABELA) by immuno-enzymatic methods. | 45 minutes | |
Secondary | Profiling of the systemic metabolomic. | Profiling of the systemic (blood) metabolomic by LC-MS and NMR. It will report metabolites in blood such as acetate, acetoacetate, acetone, 3-OH-butyrate, citrate, glutamate, lactate and pyruvate. | 45 minutes |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT03649633 -
Vitamin C, Steroids, and Thiamine, and Cerebral Autoregulation and Functional Outcome in Septic Shock
|
Phase 1/Phase 2 | |
Terminated |
NCT04117568 -
The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
|
||
Completed |
NCT04227652 -
Control of Fever in Septic Patients
|
N/A | |
Completed |
NCT05629780 -
Temporal Changes of Lactate in CLASSIC Patients
|
N/A | |
Recruiting |
NCT04796636 -
High-dose Intravenous Vitamin C in Patients With Septic Shock
|
Phase 1 | |
Terminated |
NCT03335124 -
The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock
|
Phase 4 | |
Recruiting |
NCT04005001 -
Machine Learning Sepsis Alert Notification Using Clinical Data
|
Phase 2 | |
Recruiting |
NCT05217836 -
Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
|
||
Recruiting |
NCT05066256 -
LV Diastolic Function vs IVC Diameter Variation as Predictor of Fluid Responsiveness in Shock
|
N/A | |
Not yet recruiting |
NCT05443854 -
Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01)
|
Phase 3 | |
Not yet recruiting |
NCT04516395 -
Optimizing Antibiotic Dosing Regimens for the Treatment of Infection Caused by Carbapenem Resistant Enterobacteriaceae
|
N/A | |
Recruiting |
NCT02899143 -
Short-course Antimicrobial Therapy in Sepsis
|
Phase 2 | |
Recruiting |
NCT02676427 -
Fluid Responsiveness in Septic Shock Evaluated by Caval Ultrasound Doppler Examination
|
||
Recruiting |
NCT02565251 -
Volemic Resuscitation in Sepsis and Septic Shock
|
N/A | |
Recruiting |
NCT02580240 -
Administration of Hydrocortisone for the Treatment of Septic Shock
|
N/A | |
Completed |
NCT02638545 -
Hemodynamic Effects of Dexmedetomidine in Septic Shock
|
Phase 3 | |
Not yet recruiting |
NCT02547467 -
TOADS Study: TO Assess Death From Septic Shock.
|
N/A | |
Terminated |
NCT02335723 -
ASSET - a Double-Blind, Randomized Placebo-Controlled Clinical Investigation With Alteco® LPS Adsorber
|
N/A | |
Completed |
NCT02079402 -
Conservative vs. Liberal Approach to Fluid Therapy of Septic Shock in Intensive Care
|
Phase 4 | |
Completed |
NCT02306928 -
PK Analysis of Piperacillin in Septic Shock Patients
|
N/A |