View clinical trials related to Sepsis Syndrome.
Filter by:We propose to develop novel diagnostic tests for severe sepsis and community acquired pneumonia (CAP). This program, entitled Community Acquired Pneumonia & Sepsis Outcome Diagnostics (CAPSOD), is a multidisciplinary collaboration involving investigators at six organizations: NCGR; Duke University Medical Center, Durham, NC; Henry Ford Hospital, Detroit, MI; Eli Lilly and Company, Indianapolis, IN; Indiana Centers for Applied Protein Sciences, Indianapolis, IN; and ProSanos Corp., La Jolla, CA. In the United States, Community Acquired Pneumonia is the sixth leading cause of death and the number one cause of death from infectious diseases. Of the 5.6 million annual cases of CAP, 1.1 million require hospitalization for intensive therapy. Sepsis, commonly known as blood poisoning or bloodstream infection, is the tenth leading cause of death in the US and the number one cause of death in non-cardiac intensive care units. Incidence of sepsis is increasing by 9% each year and mortality rates vary between 25 and 50%. Cost to the US healthcare system exceeds $20 billion each year. In patients with suspected sepsis or early CAP, rapid identification of patients who will develop severe sepsis or CAP is critical for effective management and positive outcome. The CAPSOD study is designed to identify novel tests for early diagnosis of severe sepsis and CAP. When performed in patients at the earliest stages of disease, these tests will have prognostic value, rapidly identifying those who will have poor outcomes or complicated courses. CAPSOD will prospectively enroll patients with sepsis and CAP at Duke University Medical Center and Henry Ford Hospital. The study will use advanced bioinformatic, metabolomic, proteomic and mRNA sequencing technologies to identify specific protein changes, or biomarkers, in patient blood samples that predict outcome in sepsis and CAP. Development of biomarker-based tests will permit patient selection for appropriate disposition, such as the intensive care unit, and use of intensive medical therapies, thereby reducing mortality and increasing effectiveness of resource allocation.