View clinical trials related to Sepsis-Associated Encephalopathy.
Filter by:Sepsis is associated with a mortality rate of 20-25%, with significant increase in case of associated comorbidities or shock. SAE is one of the most common forms of encephalopathy encountered in critically ill patients, with increased ICP as a possible underlying mechanism. Many studies revealed that ONSD is a valuable ICP monitoring tool. Also, ONSD/ETD ratio, according to previous studies, seemed to be more reliable than ONSD alone in predicting neurological outcomes of comatosed patients. The present study will assess the correlation between US-ONSD/ETD ratio and the prognosis of SAE in critically ill patients.
This is a single-center, prospective observational pilot study. The objective of this study is to evaluate the effectiveness of trazodone as compared to quetiapine, in the management of ICU delirium in adult (>=18 years old) surgical and medical ICU patients. The investigators will compare outcomes such as delirium duration, delirium-free days, coma-free days, in-hospital mortality, 28-day mortality, hospital length of stay (LOS), ICU LOS, mechanical ventilator days, complications, adverse effects, rescue medication use, delirium symptom severity, sleep duration, and sleep quality among participants receiving trazodone or quetiapine. The investigators hypothesize participants receiving trazodone will be associated with a shorter duration of delirium, decreased delirium severity, and improved sleep quality compared to participants receiving quetiapine.
Sepsis-associated encephalopathy (SAE), is one of the most common organ dysfunction during the acute phase in sepsis and septic shock. Electroencephalogram (EEG) and auditory evoked potentials (AEPs), which reflect different aspects of brain function, are the most commonly used neurophysiological indices to detect acute brain dysfunction in critically ill patients including sepsis and septic shock. AEPs show the systemic responsiveness of the central nervous to auditory stimuli, so they can be considered a direct measure of brain responsiveness. Mismatch negativity (MMN) is a change-specific component of ERPs, which elicited by a deviant stimulus occurring in a sequence of repetitive stimuli. This component is thought to represent the automatic and unconscious detection of acoustic changes which requires good perceptual discriminative capacity and iconic memory. The peaks of MMN appear at 100 ~ 250 ms from deviant stimulus onset; with increasing magnitude of stimulus change, the peak latency of MMN was shortened and the amplitude increased. Since MMN can be elicited even in the absence of attention, subjects do not need to actively participate. The MMN has been extensively demonstrated to be used in the prediction of awakening in comatose patients for various reasons, and also has been reported to predict awakening in deeply sedated critically ill patients recently. However, it remains unclear whether SAE affects MMN in amplitude and latency that reflects cognitive processing of the auditory information. Patients with sepsis and septic shock who met the inclusion criteria were screened daily on the CAM-ICU scale, and those with positive CAM-ICU were diagnosed with SAE.All patients were tested for event-evoked potentials on Day 1 and Day 3 after inclusion and were followed up to Day 28 after discharge. The investigators intend to observe the dynamic change of MMN amplitude and latency between SAE and non-SAE groups. Logic regression analysis was used to determine whether the change of MMN was a predictor of SAE.
In this study, the researcher involved the sepsis patients(defined by sepsis 3.0) in Peking Union Medical College Hospital. The SAE was defined as the Glasgow Coma Scale (GCS) score of less than 15 and the Non-SAE group GCS = 15. The control group was the non-infectious patients with acute disease strikes and the healthy control. After the sample collection, the RNA-sequence, metabolites and cytokines were under detection.