Clinical Trials Logo

Seizures clinical trials

View clinical trials related to Seizures.

Filter by:

NCT ID: NCT00040326 Completed - Epilepsy Clinical Trials

Early Surgical Intervention to Treat Epilepsy

ERSET
Start date: July 2002
Phase: Phase 3
Study type: Interventional

The purpose of this trial is to compare the effectiveness of early surgical intervention for mesial temporal lobe epilepsy to continued treatment with antiepileptic drugs.

NCT ID: NCT00007670 Completed - Seizures Clinical Trials

Does Gabapentin and Lamotriginel Have Significantly Fewer Side-effects While Providing Equal or Better Seizure Control Than the Current Drug Choice, Carbamazepine, for the Treatment of Seizures in the Elderly.

Start date: January 1998
Phase: Phase 3
Study type: Interventional

New onset epilepsy in the elderly occurs in 45,000-50,000 elderly patients each year. These patients are especially vulnerable to side effects from medications because of changes caused by the aging process and the fact that these patients often have many common diseases for which they are already receiving medications for so that the likelihood of drug interactions is increased. Two new drugs, gabapentin and lamotrigine, have recently been approved by the FDA as antiepileptic drugs. These drugs have demonstrated efficacy in the treatment of partial onset seizures, the most common seizures in the elderly. These new compounds also have favorable side effect profiles and infrequent drug-drug interactions and, therefore, would be expected to be well-tolerated in the elderly.

NCT ID: NCT00004817 Completed - Head Injuries Clinical Trials

Phase III Double Blind Trial of Valproate Sodium for Prophylaxis of Post Traumatic Seizures

Start date: February 1991
Phase: Phase 3
Study type: Interventional

OBJECTIVES: I. Determine whether treating head injured patients with valproate sodium will reduce the risk of developing seizures as a result of the head injury. II. Determine the safety of valproate, the appropriate dose, and the effect valproate may have on the recovery of the brain's ability to compute numbers, solve problems, remember information, and control the movement of limbs after head injury.

NCT ID: NCT00004729 Completed - Epilepsy Clinical Trials

Ketogenic Diet for Child Epilepsy and Seizure Control

Start date: July 1997
Phase: N/A
Study type: Interventional

Twenty to thirty percent of children with epilepsy continue to suffer from seizures, even when treated with currently available anticonvulsant medications. Children with Lennox-Gastaut Syndrome (LGS) are particularly handicapped by atonic-myoclonic seizures. Preliminary data suggest that even when other medications have failed, these seizures may respond rapidly and dramatically to a high-fat-low-carbohydrate ketogenic diet. The purpose of the study is to assess if the classic ketogenic diet is efficacious in reducing seizure frequency, medication toxicity, and improves quality of life.

NCT ID: NCT00001932 Completed - Partial Epilepsy Clinical Trials

Serotonin Receptors in Seizure Disorders

Start date: June 21, 1999
Phase: N/A
Study type: Observational

Patients in this study will undergo PET scans (a type of nuclear imaging test) to look for abnormalities in certain brain proteins associated with seizures. Studies in animals have shown that serotonin-a chemical messenger produced by the body-attaches to proteins on brain cells called 5HT1A receptors and changes them in some way that may help control seizures. There is little information on these changes, however. A new compound that is highly sensitive to 5HT1A, will be used in PET imaging to measure the level of activity of these receptors and try to detect abnormalities. Changes in receptor activity may help determine where in the brain the seizures are originating. Additional PET scans will be done to measure the amount of blood flow to the brain and the rate at which the brain uses glucose-a sugar that is the brain's main fuel. Blood flow measurement is used to calculate the distribution of serotonin receptors, and glucose use helps determine how seizures affect brain function. The information gained from the study will be used to try to help guide the patient's therapy and determine if surgery might be beneficial in controlling the patient's seizures.

NCT ID: NCT00001912 Completed - Seizures Clinical Trials

Brain Tissue Swelling and Seizure Activity in Inactive Cysticercosis

Start date: August 10, 1999
Phase: N/A
Study type: Observational

This study will examine what causes seizures in patients with cysticercosis (pork tapeworm infection). A better understanding of this could lead to improved methods of controlling or preventing seizures. In humans, the pork tapeworm (Taenia solium) lives in the small intestine. The parasite's microscopic eggs travel around the body-including to the brain-where they develop into cysts. Usually, the cysts don't cause symptoms until they die. Then, they provoke an inflammatory reaction that irritates the brain, causing seizures and other symptoms. The inflammation eventually goes away, but the dead cysts remain. Calcium deposits often form where the cysts are. Some of the calcified cysts develop swelling around them that seem to be associated with the development of seizures. This study will explore how and why these dead, calcified cysts continue to cause seizures. In so doing, it will try to determine: 1) the best diagnostic imaging method for detecting swelling around the cysts; 2) how often swelling occurs; and 3) what makes some cysts prone to swelling and related seizure activity, while others are not. Patients with cysticercosis who have had seizures or who have known or possible swelling around calcified cysts will be studied with various tests, including magnetic resonance imaging (MRI), computed tomography (CT) scans, electroencephalography (EEG), blood tests, and possibly lumbar puncture. Patients will be studied for two cycles of seizures (during active and quiet periods) or a maximum 4 years.

NCT ID: NCT00001666 Completed - Seizures Clinical Trials

Transcranial Magnetic Stimulation for the Treatment of Poorly Controlled Partial Epilepsy

Start date: March 1997
Phase: N/A
Study type: Observational

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can be used to stimulate brain activity and gather information about brain function. It is very useful when studying the areas of the brain related to motor activity (motor cortex, corticospinal tract, and corpus callosum). Epilepsy is a condition associated with seizures as a result of an over excitable cerebral cortex. Despite the introduction of several new antiepileptic medications, less than half of the patients diagnosed with partial epilepsy are well controlled. However, studies have shown that non-invasive stimulation of the brain can decrease the excitability of the cerebral cortex. Researchers are interested in the potential therapeutic effects of TMS on patients with epilepsy that have responded poorly to standard medication. This study will use TMS to decrease the excitability of the areas of the brain responsible for seizures.

NCT ID: NCT00001366 Completed - Epilepsy Clinical Trials

Mapping the Areas of the Brain Associated With Language in Children With Epilepsy

Start date: August 1993
Phase: N/A
Study type: Observational

Researchers are interested in studying if magnetic resonance imaging (MRI) is practical for locating the areas of the brain associated with language in children with epilepsy. When a region of the brain is active, it uses more fuel in the form of oxygen and sugar (glucose). As the brain uses more fuel it produces more waste products, carbon dioxide and water. Blood carries fuel to the brain and waste products away from the brain. As brain activity increases blood flow to and from the area of activity increases also. Patients participating in the study will be asked to perform tasks designed to test language skills while undergoing an MRI to detect areas of the brain using oxygen and receiving blood flow.

NCT ID: NCT00001325 Completed - Metabolic Disease Clinical Trials

Metabolic Abnormalities in Children With Epilepsy

Start date: April 1992
Phase: N/A
Study type: Observational

This study is designed to use positron emission tomography to measure brain energy use. Positron Emission Tomography (PET) is a technique used to investigate the functional activity of the brain. The PET technique allows doctors to study the normal processes of the brain (central nervous system) of normal individuals and patients with neurologic illnesses without physical / structural damage to the brain. When a region of the brain is active, it uses more fuel in the form of oxygen and sugar (glucose). As the brain uses more fuel it produces more waste products, carbon dioxide and water. Blood carries fuel to the brain and waste products away from the brain. As brain activity increases blood flow to and from the area of activity increases also. Researchers can label a sugar with a small radioactive molecule called FDG (fluorodeoxyglucose). As areas of the brain use more sugar the PET scan will detect the FDG and show the areas of the brain that are active. By using this technique researchers hope to answer the following questions; 4. Are changes in brain energy use (metabolism) present early in the course of epilepsy 5. Do changes in brain metabolism match the severity of patient's seizures 6. Do changes in metabolism occur over time or in response to drug therapy

NCT ID: NCT00001192 Completed - Schizophrenia Clinical Trials

Neuropsychological Evaluation of Psychiatric and Neurological Patients

Start date: October 18, 1983
Phase: N/A
Study type: Observational

This study will allow researchers to use various types of tests to evaluate cognitive and sensory functions. These tests, referred to as "batteries" will evaluate attention, executive functions, general intellectual functioning, language, memory, motor functions, orientation, personality, selected sensory and perceptual functions, vigilance (alertness), and visual-spatial functions. Children and adult patient will receive different test batteries. The goals of this research study are to; 1. Create descriptions based on the performance of each patient on the test batteries. Then use this information to relate patient behavior to their neurophysiological, neuroradiological, and biochemical descriptions. 2. Define subgroups of patients based on their neurobehavior in order to decrease the variability of psychiatric diagnoses, treatments, and prognoses.