Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT05220657
Other study ID # 2021-A02496-35
Secondary ID
Status Completed
Phase
First received
Last updated
Start date January 20, 2022
Est. completion date November 23, 2022

Study information

Verified date January 2023
Source University of Rennes 2
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Gut microbiota are all microorganisms including bacteria and microscopic eukaryotes that live in the digestive tracts of humans or mammals. During the last decade, some authors highlighted that a link exists between gut microbiota and sport performance. In this project, we hypothesize that gut microbiota is able to adapt to the energy needs of the body, really higher in top-level athletes or considerably lower in inactive individuals. In this context, this clinical study aims to characterize the bacterial metagenome of gut microbiota from populations located in a continuum from sedentary people to top-level athletes with high (i.e. soccer players), even very high energy needs (i.e. cyclists). The finality of this project is thus to determine if it exists some bacterial profile allowing to characterize, even to predict, the energy metabolism of an athlete and so the probability to be performant in competition.


Description:

Gut microbiota are all microorganisms including bacteria, archaea and microscopic eukaryotes that live in the digestive tracts of humans or mammals. All these microorganisms live in homeostasis in the gastrointestinal tract and provide a variety of benefits to the host immune system and energy metabolism in a state called eubiosis. On contrary, a state of dysbiosis occurs when the diversity of commensal bacteria is reduced especially in some chronic diseases including obesity, cancer or gastrointestinal diseases. During the last decade, substantial studies highlighted that a link exists between gut microbiota composition and sport performance. Research team especially identified a direct link between gut microbiota and skeletal muscle, a key organ in sport performance (Nay et al. 2019). Using rodent models, They observed that 1) the endurance performance was reduced in mice for which the gut microbiome had been experimentally destructed (Nay et al. 2019), and 2) the reduction of endurance performance was due to lower muscle glycogen levels, a key energy substrate for muscle endurance. Complementary researches have been conducted in humans to characterize the impact of physical activity on gut microbiota composition and function. A study conducted in large American cohort of 1500 individuals have thus highlighted that the gut microbiota diversity was much more important in individuals performing regular physical activity (3-5 times/week or more) compared to physically inactive people. The few studies conducted in top-level athletes are in accordance with these results. Indeed, it has been demonstrated that international Irish rugby players exhibited a clear higher microbial diversity than inactive and sedentary populations associated to higher production of short-chain fatty acids (SCFA), some key energy substrates produced by commensal bacteria (Clarke et al. 2014; Barton et al. 2018). Conversely, when people are completely physically deconditioned such as astronauts under microgravity or bedridden patients, a clear modification of gut microbiota composition occurs in the gastrointestinal tract (Voorhies and al. 2019). Such differences between top-level athletes, inactive or extremely inactive individuals cannot be only explained to lifestyle, especially diet. Indeed, longitudinal studies have clearly showed that a several weeks training period can increase the gut microbial diversity in humans suggesting an increased capacity of gut microbiota to extract energy from food, especially from dietary fibers (Allen et al. 2018). All together, these data support that the gut microbiota could adapt to the energy needs of the body, really higher in top-level athletes or considerably lower in extremely inactive individuals (e.g. astronauts or bedridden patients). These data also suggest that gut microbiota could punctually inform of the body's metabolic state of an individual. In this context, this clinical study aims to characterize the bacterial metagenome of gut microbiota from populations located in a continuum from sedentary people to top-level athletes with high (i.e. soccer players), even very high energy needs (i.e. cyclists). The finality of this project is thus to determine if it exists some bacterial profile allowing to characterize, even to predict, the energy metabolism of an athlete and so the probability to be performant in competition. For this purpose, we will assess the metabolic responses to exercise from different athletic populations (i.e. elite cyclists and soccer players) and non-active of moderately active populations. All the volunteers (n=50) will perform 3 visits in the M2S lab: 1) an inclusion visit including anthropometric measures, dietary and physical activity surveys, and after which the volunteer will leave the lab with a Nahibu kit allowing to send us a fecal sample in the next 7 days, 2) a second visit to perform the incremental cycling test, 3) a last visit to perform metabolic measures in fasted condition in basal and during submaximal exercises. The metabolic parameters measured during these tests (e.g. VO2max, power in aerobic and anaerobic thresholds, maximal carbohydrates and lipids oxidation) will be then related to the metagenomic shotgun data obtained in fecal samples.


Recruitment information / eligibility

Status Completed
Enrollment 50
Est. completion date November 23, 2022
Est. primary completion date October 26, 2022
Accepts healthy volunteers Accepts Healthy Volunteers
Gender Male
Age group 18 Years to 30 Years
Eligibility Inclusion Criteria: - BMI between 18 and 25 kg/m² - Non-smoker - Written informed consent Exclusion Criteria: - Cardiovascular risks - Metabolic diseases (e.g. diabetes) - Use of antibiotics, anti-fungi or anti-parasites in the last 3 months or during participation in the study - Use of prebiotics and / or probiotics in the form of supplements in the 7 days preceding the start of the study (greater than or equal to 100000000 Colony Forming Units or organisms per day) - Taking drug treatment for chronic pain management (paracetamol, vasodilator, homeopathy, aspirin greater than 500 mg per day) - Simultaneous participation in another research involving the human person or having recently participated in another research for which the exclusion period has not been completed.

Study Design


Related Conditions & MeSH terms


Intervention

Diagnostic Test:
Maximal incremental exercise test
Gas exchanges are measured during all the test on ergocycle until oxygen consumption reach its maximum value
Submaximal exercise test
A 25-min submaximal exercise test on ergocycle under fasting condition. Gas exchanges are measured during all the test.

Locations

Country Name City State
France University Rennes 2 - Laboratory "Movement, Sport and health Sciences" Bruz Brittany

Sponsors (2)

Lead Sponsor Collaborator
University of Rennes 2 Nahibu

Country where clinical trial is conducted

France, 

References & Publications (5)

Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, Holscher HD, Woods JA. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc. 2018 Apr;50(4):747-757. doi: 10.1249/MSS.0000000000001495. — View Citation

Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, Shanahan F, Cotter PD, O'Sullivan O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018 Apr;67(4):625-633. doi: 10.1136/gutjnl-2016-313627. Epub 2017 Mar 30. — View Citation

Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O'Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O'Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014 Dec;63(12):1913-20. doi: 10.1136/gutjnl-2013-306541. Epub 2014 Jun 9. — View Citation

Nay K, Jollet M, Goustard B, Baati N, Vernus B, Pontones M, Lefeuvre-Orfila L, Bendavid C, Rue O, Mariadassou M, Bonnieu A, Ollendorff V, Lepage P, Derbre F, Koechlin-Ramonatxo C. Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis. Am J Physiol Endocrinol Metab. 2019 Jul 1;317(1):E158-E171. doi: 10.1152/ajpendo.00521.2018. Epub 2019 Apr 30. — View Citation

Voorhies AA, Mark Ott C, Mehta S, Pierson DL, Crucian BE, Feiveson A, Oubre CM, Torralba M, Moncera K, Zhang Y, Zurek E, Lorenzi HA. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci Rep. 2019 Jul 9;9(1):9911. doi: 10.1038/s41598-019-46303-8. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Gut microbiota composition Whole metagenomic sequencing using shotgun approach week 1
Secondary Gut microbiota function Whole metagenomic sequencing using shotgun approach Week 1
Secondary Short chain fatty acids levels in stools Quantification of gut microbiota metabolites will be performed in frozen stool suspension using Ultra Performance Liquid Chromatography - Mass spectrometry. week 1
Secondary Amino acids levels in stools Quantification of gut microbiota metabolites will be performed in frozen stool suspension using Ultra Performance Liquid Chromatography - Mass spectrometry. week 1
Secondary Maximal oxygen consumption (VO2max) Maximal oxygen consumption (ml/min/kg) will be determined during maximal incremental ergocycle test. Gas exchanges will be measured throughout the test. Week 2
Secondary Lipid oxidation during physical exercise A submaximal ergocyle test will be performed under fasting condition. After 4 min of warm-up (60W), subjects will perform 10 min at 50% VO2max and a second 10 min step at 90% of the anaerobic threshold. Measurements of respiratory gas exchange will be used to estimate the type and amount of substrate oxidized and the amount of energy produced during exercise (kcal/min). week 3
Secondary Carbohydrate oxidation during physical exercise A submaximal ergocyle test will be performed under fasting condition. After 4 min of warm-up (60W), subjects will perform 10 min at 50% VO2max and a second 10 min step at 90% of the anaerobic threshold. Measurements of respiratory gas exchange will be used to estimate the type and amount of substrate oxidized and the amount of energy produced during exercise (kcal/min). week 3
See also
  Status Clinical Trial Phase
Completed NCT04053686 - An Intervention to Reduce Prolonged Sitting in Police Staff N/A
Recruiting NCT04994340 - Physical Activity Observatory of Castilla-La Mancha
Recruiting NCT05563805 - Exploring Virtual Reality Adventure Training Exergaming N/A
Completed NCT05019482 - Intervention Program Among University Student to Promote Physical Activity and Reduce the Sedentary Time N/A
Not yet recruiting NCT05963893 - Promoting a Healthy Life Through Gender Equity
Completed NCT05059964 - Circuit Training and Aerobic Exercise Among Sedentary Elderly Population N/A
Completed NCT06063187 - Technology-based Fall Risk Assessments for Older Adults in Low-income Settings
Completed NCT04042610 - Office Worker Behavior and Health Study N/A
Recruiting NCT05961943 - RESPONSE-2-PAD to Reduce Sedentary Time in Peripheral Arterial Disease Patients N/A
Completed NCT05013021 - Sprint Interval Training on the Endurance, Strength and Velocity Capacities of Healthy Sedentary Subjects N/A
Active, not recruiting NCT04569578 - Increasing Children's Physical Activity by Policy (CAP) N/A
Recruiting NCT04195165 - The Effect of Sitting and Moderate Exercise on Plasma Insulin and Glucose Responses to an Oral Glucose Tolerance Test N/A
Completed NCT04082624 - Workplace Wellness: Improving Your Experience at Work N/A
Completed NCT02544867 - Optimizing Sedentary Behavior Interventions to Affect Acute Physiological Changes N/A
Completed NCT06024434 - Effects of Specialized Strength Training Protocol On Functional Movement Status of Office Workers N/A
Withdrawn NCT05605028 - A Mental Health Intervention for a Community Program Called the PowerObesity N/A
Completed NCT04556695 - Exploration of Sedentary Behaviour Among General Practitioners: A Mixed Methods Study
Recruiting NCT05790837 - Workplace Intervention to Reduce Sitting Time: a Randomized Clinical Trial. N/A
Completed NCT06018974 - Digital Gaming Intervention for Older People in Long-term Care N/A
Recruiting NCT05534256 - Reducing Sedentary Time in Patients With Cardiovascular Disease N/A