Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT05199207
Other study ID # 20-AOI-11
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date January 11, 2022
Est. completion date July 5, 2022

Study information

Verified date July 2022
Source Centre Hospitalier Universitaire de Nice
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Muscle failure (sarcopenia or dynapenia) is a factor of frailty and therefore, ultimately, of loss of autonomy in the elderly. Currently, no biomarker of muscle failure has a high sensitivity, specificity and positive predictive value. Several results, although preliminary, suggest that metabolomics could facilitate the early identification of frail patients, allowing the implementation of primary prevention strategies. Untargeted high-resolution metabolomics analysis would identify discriminative biomarkers and biological mechanisms associated with frailty. Finally, the hypothesis that metabolic signatures can be identified as risk factors for the development of age-related dynapenia should be tested in a longitudinal design.


Description:

Sarcopenia is defined as decreased muscle strength and low muscle quantity or quality. Screening and management of sarcopenia was modified in early 2019 by the European Working Group on Sarcopenia in Older People (EWGSOP) with the creation of the F-A-C-S (Find-Assess-Confirm-Severity) protocol. The search for sarcopenia (Find) is done during the interrogation of the patient expressing symptoms that may be related to the loss of muscle mass, such as falls, asthenia, weight loss, decreased walking speed, or difficulty getting up from a chair. A simple self-report questionnaire (SARC-F) has been created to facilitate screening. Clinical suspicion of sarcopenia requires the performance of a functional assessment (Assess), using for example grip strength.and the chair lift test to look for decreased muscle strength. A pathological result already allows the suspicion of sarcopenia and the introduction of secondary prophylactic measures. Diagnostic confirmation of sarcopenia (Confirm) can be obtained by demonstrating a decrease in muscle mass by one of four validated techniques: magnetic resonance imaging (MRI), computed tomography (CT), dual-energy X-ray absorptiometry (DXA) (Buckinx et al., 2018), or bioimpedancemetry (Rossi et al., 2014). Sarcopenia is considered severe (Severity) if there is a decrease in overall physical performance objectified by physical tests such as the Time Up and Go Test, walking speed, or the Short Physical Performance Battery (SPPB) test. The development and validation of a single biomarker could be a simple and cost-effective way to diagnose and monitor individuals with sarcopenia. Potential biomarkers could include markers of neuromuscular junction, muscle protein turnover, behaviorally mediated pathways, inflammation-mediated pathways, redox-related factors, and hormones or other anabolic factors (Curcio et al., 2016). However, due to the complex pathophysiology of sarcopenia, it is unlikely that a single biomarker can identify the disease in the heterogeneous population of young and old. Instead, the development of a panel of biomarkers should be considered, including potential serum markers and tissue markers. Implementing a multidimensional methodology for modeling these pathways could provide a means to stratify risk for sarcopenia, facilitate identification of worsening of the condition, and track treatment efficacy. In the context of physical frailty and sarcopenia, the study of dynamic metabolic responses to stressors and the characterization of the biochemical pathways involved are particularly relevant, as this condition is closely associated with metabolic disorders. Disturbances in protein and amino acid metabolism may contribute substantially to the pathophysiology of sarcopenia. The hypothesis that metabolic signatures can be identified as risk factors for the development of age-related sarcopenia needs to be tested in a longitudinal design. The main objective is to Identify metabolomic signatures of muscle failure in the elderly.


Recruitment information / eligibility

Status Completed
Enrollment 60
Est. completion date July 5, 2022
Est. primary completion date April 22, 2022
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 65 Months and older
Eligibility Inclusion Criteria: - Age greater than or equal to 65 years; - Patient affiliated or beneficiary of a social security plan; - Patient having signed a prior informed consent Exclusion Criteria: - presence of a physical or cognitive pathology preventing the performance of the physical activity protocol during 3 months - Patient with legal protection

Study Design


Related Conditions & MeSH terms


Intervention

Behavioral:
Physical activity programm
adapted physical activity during 3 month

Locations

Country Name City State
France CHU de Nice Nice

Sponsors (1)

Lead Sponsor Collaborator
Centre Hospitalier Universitaire de Nice

Country where clinical trial is conducted

France, 

Outcome

Type Measure Description Time frame Safety issue
Primary Different metabolomic signature (The amino acid composition) between the sarcopenic group and the control group Change in the amino acid composition (metabolomic signature) at Day 0 between the sarcopenic group and the control group at Day 0
Secondary Change in the amino acid composition (metabolomic signature) after 3 month of physical activity Change in the amino acid composition (metabolomic signature) after 3 month of physical activity for the sarcopenic group compared to the control group between Day 0 and Month 3
See also
  Status Clinical Trial Phase
Active, not recruiting NCT06287502 - Efficacy of Structured Exercise-Nutritional Intervention on Sarcopenia in Patients With Osteoporosis N/A
Recruiting NCT05063279 - RELIEF - Resistance Training for Life N/A
Completed NCT03644030 - Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
Recruiting NCT06143592 - Inspiratory Muscle Training on Balance, Falls and Diaphragm Thickness in the Elderly N/A
Terminated NCT04350762 - Nutritional Supplementation in the Elderly With Weight Loss N/A
Enrolling by invitation NCT05953116 - Managing the Nutritional Needs of Older Filipino With Due Attention to Protein Nutrition and Functional Health Study N/A
Recruiting NCT04028206 - Resistance Exercise or Vibration With HMB for Sarcopenia N/A
Enrolling by invitation NCT03297632 - Improving Muscle Strength, Mass and Physical Function in Older Adults N/A
Completed NCT04015479 - Peanut Protein Supplementation to Augment Muscle Growth and Improve Markers of Muscle Quality and Health in Older Adults N/A
Completed NCT03234920 - Beta-Hydroxy-Beta-Methylbutyrate (HMB) Supplementation After Liver Transplantation N/A
Recruiting NCT03998202 - Myopenia and Mechanisms of Chemotherapy Toxicity in Older Adults With Colorectal Cancer
Recruiting NCT04717869 - Identifying Modifiable PAtient Centered Therapeutics (IMPACT) Frailty
Completed NCT05497687 - Strength-building Lifestyle-integrated Intervention N/A
Completed NCT03119610 - The Physiologic Effects of Intranasal Oxytocin on Sarcopenic Obesity Phase 1/Phase 2
Recruiting NCT05711095 - The Anabolic Properties of Fortified Plant-based Protein in Older People N/A
Recruiting NCT05008770 - Trial in Elderly With Musculoskeletal Problems Due to Underlying Sarcopenia - Faeces to Unravel Gut and Inflammation Translationally
Not yet recruiting NCT05860556 - Sustainable Eating Pattern to Limit Malnutrition in Older Adults
Recruiting NCT04545268 - Prehabilitation for Cardiac Surgery in Patients With Reduced Exercise Tolerance N/A
Recruiting NCT04522609 - Electrostimulation of Skeletal Muscles in Patients Listed for a Heart Transplant N/A
Recruiting NCT03160326 - The QUALITY Vets Project: Muscle Quality and Kidney Disease