Sarcopenia Clinical Trial
Official title:
Association of Uremic Toxins and Sacropenia in Hemodialysis Patients
Background. In advanced chronic kidney disease (CKD), multiple metabolic and nutritional
abnormalities may contribute to the impairment of skeletal muscle mass and function thus
predisposing patients to the condition of sarcopenia. Herein, we aim to investigate the
association of uremic toxins and sacropenia. In addition, the prevalence and mortality
predictive power of sarcopenia, defined by different methods, in a cohort of hemodialysis
patients.
Methods. We plan to evaluate 300 HD patients. Sarcopenia was defined as reduced muscle
function assessed by handgrip strength (HGS <30th percentile of a population-based reference
adjusted for sex and age) plus diminished muscle mass assessed by different methods: (i)
midarm muscle circumference (MAMC) <90% of reference value (A), (ii) muscle wasting by DEXA
(B) and (iii) reduced skeletal muscle mass index (<10.76 kg/m² men; <6.76 kg/m² women)
estimated by bioelectrical impedance analysis (BIA) (C). Serum levels of 3 established uremic
toxins such as indoxyl sulfate, p-cresol and hippuric acid will be measured. Besides, various
relevant inflammatory markers will also be assessed. Patients will be followed for up to 3
years for all-cause mortality.
Patients and Methods
This study will included 300 consecutive patients receiving maintenance hemodialysis at the
outpatient dialysis center of the Tungs Taichung Metroharbour Hospital, Taichung Taiwan.
Recruitment will start after approval of the Ethics Committee of our hospital. Exclusion
criteria were age of <20 and >90 years, clinical signs of acute infection during the month
preceding the inclusion, active cancer or liver disease at the time of evaluation, previous
diagnosis of immunological diseases and unwillingness to participate in the study. Physician
will perform a complete chart review and interviewed each patient regarding their clinical
history.
All MHD patients enrolled in our study will be tested with DEXA and bioelectrical impedance
analysis (BIA) and grip strength. Demographic data was collected and anthropometric
measurement such as mid-arm muscle circumference (MAMC) calf circumference, and laboratory
examination are conducted.
Handgrip strength
Muscle strength is assessed in the dominant hand using a Jamar hand dynamometer (Lafayette
Instrument Company, USA). Patients are first familiarized with the device and were then
examined standing with both arms extended sideways from the body with the dynamometer facing
away from the body. Patients were instructed to grip the dynamometer with the maximum
strength in response to a voice command, and the highest value of three measurements was
considered for the study. Handgrip strength (HGS) values under the 30th percentile from a
specific-population reference value adjusted for age and sex were considered as reduced.
Anthropometry
Body mass index (BMI) is calculated as weight in kilograms divided by height in squared
meters. MAMC is calculated according to the following equation, based on mid-arm
circumference (measured at mid-point from the acromion to olecranon) and the triceps skinfold
(using caliper Lange®, Cambridge Scientific Industries, Inc.).
Values of MAMC were compared with the 50th percentile of NHANES II and standard adequacy of
<90% was considered as reduced muscle mass .
Bioelectrical impedance analysis
Body composition was measured using an 8-contact electrode bioelectrical impedance analysis
(BIA) device (Tanita BC-418, Tanita, Tokyo, Japan), and followed the standard procedure and
the manufacturer's instructions. This BIA device was used to measure the whole body and
segmental impedance (± 1Ω) at a frequency of 50 kHz, and it provided valid muscle mass
estimates (kg) of each of the four extremities.[2 Appendicular muscle mass (ASM) was
calculated as the sum of the estimated muscle mass for the arms and legs. A relative skeletal
muscle mass index (ASM/ht2) normalized for height was defined as the ratio of ASM (kg) and
the height squared(m2). For this analysis, we defined muscle mass cut-off points according to
the distribution of ASM/ht2 of a young population comprising 998 healthy adults (aged 20-40
years) or the study population. A participant was considered to have low muscle mass if his
or her ASM/ht2 was below −2 standard deviations of the reference young adult values defined
in previous studies (6.76 kg/m2 for men and 5.28 kg/m2 for women).
Sarcopenia diagnosis
The diagnosis of sarcopenia was based on the presence of derangements in both muscle function
and muscle mass. For the purpose of the study, we considered one muscle function indicator
(reduced HGS) associated with one of three indicators of muscle mass (MAMC, DEXA or BIA).
Therefore, reduced HGS in association with an MAMC of <90% of the standard adequacy (Method
A), presence of muscle wasting by DEXA (MethodB) or reduced SMMI by BIA(MethodC) were
considered as diagnosis of sarcopenia.
Laboratorial parameters
All blood samples are collected during the midweek dialysis from the AV fistula, immediately
after the insertion of the dialysis cannula but before the administration of heparin. Blood
is sampled in 4 c.c. Venoject II tubes, centrifuged (10 min, 3000 rpm) and immediately store
at -70°C until assayed. Serum albumin, urea, creatinine, and total protein concentrations in
serum are determined according to standard methods. The serum levels of hsCRP are measured
using a Behring Nephelometer II (Dade Behring, Tokyo, Japan). Serum concentrations of total
p-cresol sulfate, hippuric acid and IS (i.e., combined free and protein bound fractions) are
analyzed with High-performance liquid chromatography (HPLC). Briefly, for binding
competition, 200μl serum to which we added 20μl 0.50mM 1-naphthalenesulfonic acid (internal
standard) was vortex-mixed with 250μl 0.24M sodium octanoate (binding competitor).After
incubation at room temperature for 5min, we added 2ml cold acetone to precipitate proteins.
Following vortex-mixing and centrifuging at 4 ◦C, 1860×g for 20 min, the supernatant was
transferred to 12mm×100mm, GL 14 glass test tubes and 2ml dichloromethane was added. After
vortex-mixing and centrifuging at 4 ◦C, 1860×g for 10min, 200μl of the upper layer was
transferred to glass autosampler vials, followed by addition of 20μl 1M HCl and 15μl was
injected onto the HPLC. The HPLC analysis was performed on an Agilent 1100 series LC (Santa
Clara, CA),and Agilent ChemStations software were used for the chromatographic analysis. The
separation was carried out on a ZORBAX SB-C18 Solv Saver Plus HPLC column (5 μm, 3.0 mm×150
mm).at a flow rate of 0.6 ml/min. Mobile phase A is 0.2% trifluoroacetic acid in Milli-Q
water and mobile phase B is 0.2% trifluoroacetic acid in acetonitrile. The analytical method
consists of an isocratic run with 92% mobile phase A for 23 min.. Each analytical run was
followed by a 1.3 min washout gradient to 100% B. Column temperature was 25 ◦C, and
autosampler tray temperature was 6 ◦C. We quantified the analytes by using the analyte to
standard peak area ratio on a Agilent 1100 High Performance Fluorescence detector G1321A and
Agilent 1100 Series UV-Visible detectors G1314A. Detector settings were λex 260 nm/λem288nm
for p-cresyl sulfate and λex 280 nm/λem 390nm for indoxyl sulfate and internal standard.
Hippuric acid was monitored by UV-Vis detector at 254 nm. Quantitative results are obtained
and calculated in terms of their concentrations (mg/L).
Blood samples are also collected before dialysis for measurement of oxidative stress (CML,
Nε-(carboxymethyl)lysine ) and inflammatory markers (IL-6). Serum Nε-(carboxymethyl)lysine
(CML) was determined using enzyme-linked immunosorbent assay (R&D system, Minneapolis, MN,
USA). Similarly, the concentration of IL-6 is also assessed using Quantikine Human
Interleukin Immunoassay (R&D Systems Minneapolis, MN, USA) with a detection limit of 15 pg/L
and 0.12 pg/mL, respectively. In addition, serum irisin, urotensin II, follistatin and alpha
1 antichymotrypsin concentrations are measured by using the human enzyme-linked immunosorbent
assay (ELISA) kits in accordance with the manufacturer's instructions. The All determinations
are performed in duplicate, and the mean value is used.
Statistical analyses
The variables are expressed in mean±SD, median (interquartile range) or proportions. Variable
distributions are tested by e.g. Shapiro Wilk test, and those not normally distributed are
standardized by using z-score.Studentt-test or Chi-square test is employed for the
comparisons between sarcopenic and non-sarcopenic patients. Kappa test is used to evaluate
the agreement among the methods. Survival analyses are made with the Kaplan-Meier survival
curve and the Cox proportional hazard model. The univariate and multivariate Cox-regression
analyses are presented as hazard ratio [HR; 95% confidence intervals (CI)]. Statistical
significance is set at the level of P<0.05, and the analyses are performed by using the SPSS
software version 18 (SPSS, Inc., Chicago, IL, USA)
;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT06287502 -
Efficacy of Structured Exercise-Nutritional Intervention on Sarcopenia in Patients With Osteoporosis
|
N/A | |
Recruiting |
NCT05063279 -
RELIEF - Resistance Training for Life
|
N/A | |
Completed |
NCT03644030 -
Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
|
||
Recruiting |
NCT06143592 -
Inspiratory Muscle Training on Balance, Falls and Diaphragm Thickness in the Elderly
|
N/A | |
Terminated |
NCT04350762 -
Nutritional Supplementation in the Elderly With Weight Loss
|
N/A | |
Enrolling by invitation |
NCT05953116 -
Managing the Nutritional Needs of Older Filipino With Due Attention to Protein Nutrition and Functional Health Study
|
N/A | |
Recruiting |
NCT04028206 -
Resistance Exercise or Vibration With HMB for Sarcopenia
|
N/A | |
Enrolling by invitation |
NCT03297632 -
Improving Muscle Strength, Mass and Physical Function in Older Adults
|
N/A | |
Completed |
NCT04015479 -
Peanut Protein Supplementation to Augment Muscle Growth and Improve Markers of Muscle Quality and Health in Older Adults
|
N/A | |
Completed |
NCT03234920 -
Beta-Hydroxy-Beta-Methylbutyrate (HMB) Supplementation After Liver Transplantation
|
N/A | |
Recruiting |
NCT03998202 -
Myopenia and Mechanisms of Chemotherapy Toxicity in Older Adults With Colorectal Cancer
|
||
Recruiting |
NCT04717869 -
Identifying Modifiable PAtient Centered Therapeutics (IMPACT) Frailty
|
||
Completed |
NCT05497687 -
Strength-building Lifestyle-integrated Intervention
|
N/A | |
Completed |
NCT03119610 -
The Physiologic Effects of Intranasal Oxytocin on Sarcopenic Obesity
|
Phase 1/Phase 2 | |
Recruiting |
NCT05711095 -
The Anabolic Properties of Fortified Plant-based Protein in Older People
|
N/A | |
Recruiting |
NCT05008770 -
Trial in Elderly With Musculoskeletal Problems Due to Underlying Sarcopenia - Faeces to Unravel Gut and Inflammation Translationally
|
||
Not yet recruiting |
NCT05860556 -
Sustainable Eating Pattern to Limit Malnutrition in Older Adults
|
||
Recruiting |
NCT04545268 -
Prehabilitation for Cardiac Surgery in Patients With Reduced Exercise Tolerance
|
N/A | |
Recruiting |
NCT04522609 -
Electrostimulation of Skeletal Muscles in Patients Listed for a Heart Transplant
|
N/A | |
Recruiting |
NCT03160326 -
The QUALITY Vets Project: Muscle Quality and Kidney Disease
|