Clinical Trials Logo

Clinical Trial Summary

This study looks at how the arthritis drug methotrexate works in low doses to treat rheumatoid arthritis. (High doses of methotrexate are used to treat some types of cancer.) Methotrexate blocks the action of the B-vitamin known as folic acid. We are studying the biochemical reactions affected by this vitamin because we think that blocking many of these reactions may be necessary for methotrexate to work in treating rheumatoid arthritis. Through these studies, we hope to gain a better understanding of how this drug and related drugs work as treatments for arthritis.


Clinical Trial Description

Low-dose methotrexate therapy suppresses autoimmune arthritis in human and animal models. We hypothesize that the effect of methotrexate in the treatment of rheumatoid arthritis is due to the inhibition of aminoimidazole-carboxamide ribotide transformylase, a folate-dependent enzyme that catalyzes the last step in the de novo biosynthesis of inosine monophosphate. The resulting accumulation of aminoimidazole carboxamide riboside inhibits adenosine deaminase, therefore interfering with normal adenosine metabolism. It is well known that children with adenosine deaminase deficiency have severe combined immunodeficiency syndrome. This suggests that adenosine deaminase activity is key to immune competence and is associated with the mechanism of efficacy in methotrexate therapy of rheumatoid arthritis.

Several studies indicate that supplemental folinic acid (5-formyltetrahydrofolate) used in large doses during low-dose methotrexate therapy for rheumatoid arthritis causes a flare in joint inflammation. However, supplemental folic acid (pteroylglutamic acid) does not lessen the efficacy of the therapy. We further hypothesize that if methotrexate efficacy is driven by aminoimidazole carboxamide ribotide transformylase inhibition, folic acid supplementation should not alter urinary levels of aminoimidazole carboxamide, adenosine, and deoxyadenosine, while folinic acid supplementation should prevent the accumulation of these compounds.

We will test our hypotheses both in people with rheumatoid arthritis and in Lewis rat adjuvant arthritis. Our objectives include: (1) determining if the dose level of methotrexate that is clinically optimal in the treatment of Lewis rat adjuvant arthritis interferes with normal adenosine metabolism; (2) determining the effectiveness of drugs that interfere with adenosine metabolism (deoxycoformycin, aminoimidazole carboxamide, and aminoimidazole carboxamide with a suboptimal dose of methotrexate) in Lewis rat adjuvant arthritis; and (3) determining whether supplemental folic acid and folinic acid during methotrexate therapy normalize adenosine metabolism in patients with rheumatoid arthritis. The information we obtain will enhance the understanding of the biochemical action of antifolates/antimetabolites that are effective in the treatment of human and animal arthritis. ;


Study Design

Allocation: Randomized, Endpoint Classification: Pharmacodynamics Study, Intervention Model: Crossover Assignment, Masking: Double Blind (Subject, Investigator), Primary Purpose: Diagnostic


Related Conditions & MeSH terms


NCT number NCT00000395
Study type Interventional
Source University of Alabama at Birmingham
Contact
Status Completed
Phase Phase 2
Start date September 1996
Completion date August 2002

See also
  Status Clinical Trial Phase
Completed NCT04226131 - MusculRA: The Effects of Rheumatoid Arthritis on Skeletal Muscle Biomechanics N/A
Completed NCT04171414 - A Study to Evaluate Usability of Subcutaneous Auto-injector of CT-P17 in Patients With Active Rheumatoid Arthritis Phase 3
Completed NCT02833350 - Safety and Efficacy Study of GDC-0853 Compared With Placebo and Adalimumab in Participants With Rheumatoid Arthritis (RA) Phase 2
Completed NCT04255134 - Biologics for Rheumatoid Arthritis Pain (BIORA-PAIN) Phase 4
Recruiting NCT05615246 - Exactech Humeral Reconstruction Prosthesis of Shoulder Arthroplasty PMCF (HRP)
Completed NCT03248518 - Lessening the Impact of Fatigue in Inflammatory Rheumatic Diseases N/A
Completed NCT03514355 - MBSR in Rheumatoid Arthritis Patients With Controlled Disease But Persistent Depressive Symptoms N/A
Recruiting NCT06005220 - SBD121, a Synbiotic Medical Food for RA Management N/A
Recruiting NCT05451615 - Efficacy and Safety of Abatacept Combined With JAK Inhibitor for Refractory Rheumatoid Arthritis Phase 3
Completed NCT05054920 - Eccentric Versus Concentric Exercises for Rotator Cuff Tendinopathy in Patients With Rheumatoid Arthritis N/A
Completed NCT02037737 - Impact and Use of Abatacept IV for Rheumatoid Arthritis in Real Life Setting N/A
Recruiting NCT04079374 - Comparative Efficacy, Safety and Immunogenicity Study of Etanercept and Enbrel Phase 3
Completed NCT02504268 - Effects of Abatacept in Patients With Early Rheumatoid Arthritis Phase 3
Recruiting NCT05496855 - Remote Care in People With Rheumatoid Arthritis N/A
Completed NCT05051943 - A Study of the Real-world Use of an Adalimumab Biosimilar and Evaluation of Nutritional Status on the Therapeutic Response
Recruiting NCT06103773 - A Study of Single and Multiple Oral Doses of TollB-001 Phase 1
Recruiting NCT06031415 - Study of GS-0272 in Participants With Rheumatoid Arthritis Phase 1
Completed NCT05999266 - The Cartilage and Muscle Thickness on Knee Pain in Patients With Rheumatoid Arthritis
Recruiting NCT05302934 - Evaluation of the PHENO4U Data Platform in Patients Undergoing Total Knee Arthroplasty
Recruiting NCT04169100 - Novel Form of Acquired Long QT Syndrome Phase 4