View clinical trials related to Rhabdomyosarcoma.
Filter by:This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.
This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.
The purpose of this study is to see if nab-paclitaxel combined with gemcitabine prevents the formation or growth of tumors in participants with relapsed or refractory osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcoma and to measure the length of time during and after treatment that their disease does not get worse. Researchers also want to find out if nab-paclitaxel combined with gemcitabine is safe and tolerable.
This phase II trial studies how well cabozantinib-s-malate works in treating younger patients with sarcomas, Wilms tumor, or other rare tumors that have come back, do not respond to therapy, or are newly diagnosed. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth and tumor blood vessel growth.
This randomized phase III trial studies how well combination chemotherapy (vincristine sulfate, dactinomycin, cyclophosphamide alternated with vincristine sulfate and irinotecan hydrochloride or vinorelbine) works compared to combination chemotherapy plus temsirolimus in treating patients with rhabdomyosarcoma (cancer that forms in the soft tissues, such as muscle), and has an intermediate chance of coming back after treatment (intermediate risk). Drugs used work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Combination chemotherapy and temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether chemotherapy plus temsirolimus is more effective than chemotherapy alone in treating patients with intermediate-risk rhabdomyosarcoma.
The purpose of the study is to evaluate patients with refractory childhood sarcomas, who have been treated with a combination therapy of trabectedin and irinotecan (within compassionate use), to determine, if this is a promising treatment option with acceptable toxicity and if the results warrant a prospective study.
Children with sarcomas are routinely assessed with a variety of imaging techniques that involve the use of ionizing radiation. These include computed tomography (CT), nuclear bone scan, and positron emission tomography-CT (PET-CT). Pediatric sarcoma patients undergo many imaging studies at the time of diagnosis, during therapy and for years following completion of therapy. Because children are in a stage of rapid growth, their tissues and organs are more susceptible to the harmful effects of ionizing radiation than are adults. Furthermore, compared to adults, children have a longer life expectancy and, therefore, a longer period of time in which to develop the adverse sequelae of radiation exposure, such as the development of second malignancies. Alternative experimental methods of measuring tumor response will be compared to current standard of care measures to determine if the experimental method is equivalent to methods currently being used. Investigators wish to determine if they can reduce patient's exposure to the harmful effects of ionizing radiation by replacing imaging studies that use radiation with whole body diffusion weighted magnetic resonance imaging (DW-MRI) which does not use any radiation. They also want to know if DW-MRI measurements of the tumor can tell how well the tumor is responding to therapy. There have been studies in adults with cancer that have shown that DW-MRI provides useful information about how tumors are responding to therapy. There have only been very small studies of DW-MRI in children with tumors in the body. Therefore, the role of DW-MRI in pediatric sarcoma patients is not yet known and it is still experimental. This study might give us important information that could help us treat other children with bone or soft tissue sarcomas in the future.
The purpose of this study is to determine if Magnetic Resonance guided High Intensity Focused Ultrasound ablative therapy is safe and feasible for children, adolescents, and young adults with refractory or relapsed solid tumors.