View clinical trials related to Rhabdoid Tumor.
Filter by:This is a Phase I, open-label, dose escalation and dose expansion study with BID (suspension) and TID (tablet) oral dose of tazemetostat. Subjects will be screened for eligibility within 14 days of the planned first dose of tazemetostat. A treatment cycle will be 28 days. Response assessment will be evaluated after 8 weeks of treatment and subsequently every 8 weeks while on study. The study has two parts: Dose Escalation and Dose Expansion. Dose escalation for subjects with the following relapsed/refractory malignancies: - Rhabdoid tumors: - Atypical teratoid rhabdoid tumor (ATRT) - Malignant rhabdoid tumor (MRT) - Rhabdoid tumor of kidney (RTK) - Selected tumors with rhabdoid features - INI1-negative tumors: - Epithelioid sarcoma - Epithelioid malignant peripheral nerve sheath tumor - Extraskeletal myxoid chondrosarcoma - Myoepithelial carcinoma - Renal medullary carcinoma - Other INI1-negative malignant tumors (e.g., dedifferentiated chordoma) (with Sponsor approval) - Synovial Sarcoma with a SS18-SSX rearrangement Dose Escalation cohorts are closed to enrollment. Dose Expansion at the MTD or the RP2D - Cohort 1 - ATRT (closed to enrollment) - Cohort 2 - MRT/RTK/selected tumors with rhabdoid features (closed to enrollment) - Cohort 3 - INI-negative tumors: - Epithelioid sarcoma - Epithelioid malignant peripheral nerve sheath tumor - Extraskeletal myxoid chondrosarcoma - Myoepithelial carcinoma - Renal medullary carcinoma - Chordoma (poorly differentiated or de-differentiated) - Other INI1-negative malignant tumors (e.g., dedifferentiated chordoma) with Sponsor approval - Cohort 4 - Tumor types eligible for Cohorts 1 through 3 or synovial sarcoma with SS18-SSX rearrangement (closed to enrollment)
This research study is studying stereotactic body radiotherapy (SBRT) as a possible treatment for lung relapse of Ewing sarcoma, rhabdomyosarcoma, osteosarcoma, non-rhabdomyosarcoma soft tissue sarcoma, Wilms tumor or other primary renal tumor (including clear cell and rhabdoid). SBRT is a form of targeted radiotherapy that can treat very small tumors using a few large doses.
This phase I trial studies the side effects and the best dose of wild-type reovirus (viral therapy) when given with sargramostim in treating younger patients with high grade brain tumors that have come back or that have not responded to standard therapy. A virus, called wild-type reovirus, which has been changed in a certain way, may be able to kill tumor cells without damaging normal cells. Sargramostim may increase the production of blood cells and may promote the tumor cell killing effects of wild-type reovirus. Giving wild-type reovirus together with sargramostim may kill more tumor cells.
This is a Phase I trial with new experimental drugs such as simvastatin in combination with topotecan and cyclophosphamide in the hopes of finding a drug that may work against tumors that have come back or that have not responded to standard therapy. This study will define toxicity of high dose simvastatin in combination with topotecan and cyclophosphamide and evaluate for cholesterol levels and IL6/STAT3 pathway changes as biomarkers of patient response.
The purpose of this study is to test the feasibility (ability to be done) of experimental technologies to determine a tumor's molecular makeup. This technology includes a genomic report based on DNA exomes and RNA sequencing that will be used to discover new ways to understand cancers and potentially predict the best treatments for patients with cancer in the future.
This study incorporates alisertib, the small-molecule inhibitor of Aurora A activity, in the treatment of patients younger than 22 years of age. Patients with recurrent or refractory AT/RT or MRT will receive alisertib as a single agent. Patients with newly diagnosed AT/RT will receive alisertib as part of age- and risk-adapted chemotherapy. Radiation therapy will be given to children ≥12 months of age. Patients with AT/RT and concurrent extra-CNS MRT are eligible. Alisertib will be administered as a single agent on days 1-7 of each 21-day cycle in all recurrent patients enrolled on Stratum A. For the patients on the newly diagnosed strata (B, C or D), alisertib will be administered in sequence with chemotherapy and radiotherapy. This study has 3 primary strata: (A) children with recurrent/progressive AT/RT or extra-CNS MRT, (B) children < 36 months-old with newly diagnosed AT/RT, (C) children > 36 months old with newly diagnosed AT/RT. Children with concurrent MRT will be treated according to age and risk stratification schemes outlined for strata B and C and will have additional treatment for local control. Children with synchronous AT/RT will be treated with age and CNS risk-appropriate therapy, and also receive surgery and/or radiation therapy for local control of the non-CNS tumor. PRIMARY OBJECTIVES - To estimate the sustained objective response rate and disease stabilization in pediatric patients with recurrent or progressive AT/RT (atypical teratoid rhabdoid tumor in the CNS) (Stratum A1) treated with alisertib and to determine if the response is sufficient to merit continued investigation of alisertib in this population. - To estimate the sustained objective response rate and disease stabilization in pediatric patients with recurrent or progressive extra-CNS MRT (malignant rhabdoid tumor outside the CNS) (Stratum A2) treated with alisertib and to determine if the response is sufficient to merit continued investigation of alisertib in this population. - To estimate the 3-year PFS rate of patients with newly diagnosed AT/RT who are younger than 36 months of age at diagnosis with no metastatic disease (Stratum B1) treated with alisertib in sequence with induction and consolidation chemotherapy and radiation therapy (depending on age) and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To estimate the 1-year PFS rate of patients with newly diagnosed AT/RT who are younger than 36 months of age at diagnosis, with metastatic disease (Stratum B2) treated with alisertib in sequence with induction and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To estimate the 3-year PFS rate of patients with newly diagnosed AT/RT who are 3 years of age or greater at diagnosis with no metastatic disease and gross total resection or near total resection (Stratum C1) treated with alisertib in sequence with radiation therapy and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To estimate the 1-year PFS rate of patients with newly diagnosed AT/RT who are 3 years of age or greater at diagnosis with metastatic or residual disease (Stratum C2) treated with alisertib in sequence with radiation therapy and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To characterize the pharmacokinetics and pharmacodynamics of alisertib in pediatric patients and to relate drug disposition to toxicity. SECONDARY OBJECTIVES - To estimate the duration of objective response and PFS in patients with recurrent/progressive AT/RT and MRT (Strata A1 and A2). - To estimate PFS and OS distributions in patients with newly diagnosed AT/RT (Strata B1, B2, B3, C1 and C2). - To describe toxicities experienced by patients treated on this trial, specifically any toxicities of alisertib when administered as a single agent or in combination with other therapy over multiple courses and toxicities related to proton or photon radiation therapy. - To describe the patterns of local and distant failure in newly diagnosed patients (Strata B1, B2, B3, C1 and C2). Local control relative to primary-site radiation therapy, with criteria for infield, marginal, or distant failure will also be reported descriptively.
This phase I trial studies the side effects and best dose of azurin-derived cell-penetrating peptide p28 (p28) in treating patients with recurrent or progressive central nervous system tumors. Drugs used in chemotherapy, such as azurin-derived cell-penetrating peptide p28, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.
LEE011 is a small molecule inhibitor of CDK4/6. LEE011 has demonstrated in vitro and in vivo activity in both tumor models. The primary purpose of this study was to determine the maximum tolerated dose (MTD) and/or recommended dose for expansion (RDE) in pediatric patients and to delineate a clinical dose to be used in future studies. This study was also to have assessed the safety, tolerability, PK and preliminary evidence of antitumor activity of LEE011 in patients with MRT or neuroblastoma.
This laboratory study is looking into biomarkers in samples from younger patients with kidney cancer. Studying samples of tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. It may also help doctors find better ways to treat cancer.
This is a phase I study designed to determine the feasibility of transplantation using a novel transplant approach that employs a two-stage haploidentical cell infusion following myeloablative conditioning. This strategy, which includes selective depletion of naïve T cells, may speed immune reconstitution thereby potentially reducing the limitations of traditional haploidentical hematopoietic stem cell transplantation (HSCT) and increasing its potential therapeutic application. Additionally, the investigators intend to explore overall survival, event-free survival, hematopoietic cell recovery and engraftment as well as infection rates and complications in these patients.