View clinical trials related to Rhabdoid Tumor.
Filter by:This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the proteins needed for cell growth.
This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4 and CD8 T cells lentivirally transduced to express a HER2-specific chimeric antigen receptor (CAR) and EGFRt, delivered by an indwelling catheter in the tumor resection cavity or ventricular system in children and young adults with recurrent or refractory HER2-positive CNS tumors. A child or young adult with a refractory or recurrent CNS tumor will have their tumor tested for HER2 expression by immunohistochemistry (IHC) at their home institution or at Seattle Children's Hospital. If the tumor is HER2 positive and the patient meets all other eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meets none of the exclusion criteria, then they can be apheresed, meaning T cells will be collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets HER2-expressing tumor cells. The patient's newly engineered T cells will then be administered via the indwelling CNS catheter for two courses. In the first course they will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Following the two courses, patient's will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of HER2-specific CAR T cells can be manufactured to complete two courses of treatment with three doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that HER-specific CAR T cells safely can be administered through an indwelling CNS catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study safely can be delivered directly into the brain via indwelling catheter. Secondary aims of the study will include to evaluate CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple time points are available, also evaluate the degree of HER2 expression at diagnosis versus at recurrence.
This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.
This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body (advanced) and have come back (recurrent) or do not respond to treatment (refractory). Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.
This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.
This study incorporates alisertib, the small-molecule inhibitor of Aurora A activity, in the treatment of patients younger than 22 years of age. Patients with recurrent or refractory AT/RT or MRT will receive alisertib as a single agent. Patients with newly diagnosed AT/RT will receive alisertib as part of age- and risk-adapted chemotherapy. Radiation therapy will be given to children ≥12 months of age. Patients with AT/RT and concurrent extra-CNS MRT are eligible. Alisertib will be administered as a single agent on days 1-7 of each 21-day cycle in all recurrent patients enrolled on Stratum A. For the patients on the newly diagnosed strata (B, C or D), alisertib will be administered in sequence with chemotherapy and radiotherapy. This study has 3 primary strata: (A) children with recurrent/progressive AT/RT or extra-CNS MRT, (B) children < 36 months-old with newly diagnosed AT/RT, (C) children > 36 months old with newly diagnosed AT/RT. Children with concurrent MRT will be treated according to age and risk stratification schemes outlined for strata B and C and will have additional treatment for local control. Children with synchronous AT/RT will be treated with age and CNS risk-appropriate therapy, and also receive surgery and/or radiation therapy for local control of the non-CNS tumor. PRIMARY OBJECTIVES - To estimate the sustained objective response rate and disease stabilization in pediatric patients with recurrent or progressive AT/RT (atypical teratoid rhabdoid tumor in the CNS) (Stratum A1) treated with alisertib and to determine if the response is sufficient to merit continued investigation of alisertib in this population. - To estimate the sustained objective response rate and disease stabilization in pediatric patients with recurrent or progressive extra-CNS MRT (malignant rhabdoid tumor outside the CNS) (Stratum A2) treated with alisertib and to determine if the response is sufficient to merit continued investigation of alisertib in this population. - To estimate the 3-year PFS rate of patients with newly diagnosed AT/RT who are younger than 36 months of age at diagnosis with no metastatic disease (Stratum B1) treated with alisertib in sequence with induction and consolidation chemotherapy and radiation therapy (depending on age) and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To estimate the 1-year PFS rate of patients with newly diagnosed AT/RT who are younger than 36 months of age at diagnosis, with metastatic disease (Stratum B2) treated with alisertib in sequence with induction and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To estimate the 3-year PFS rate of patients with newly diagnosed AT/RT who are 3 years of age or greater at diagnosis with no metastatic disease and gross total resection or near total resection (Stratum C1) treated with alisertib in sequence with radiation therapy and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To estimate the 1-year PFS rate of patients with newly diagnosed AT/RT who are 3 years of age or greater at diagnosis with metastatic or residual disease (Stratum C2) treated with alisertib in sequence with radiation therapy and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To characterize the pharmacokinetics and pharmacodynamics of alisertib in pediatric patients and to relate drug disposition to toxicity. SECONDARY OBJECTIVES - To estimate the duration of objective response and PFS in patients with recurrent/progressive AT/RT and MRT (Strata A1 and A2). - To estimate PFS and OS distributions in patients with newly diagnosed AT/RT (Strata B1, B2, B3, C1 and C2). - To describe toxicities experienced by patients treated on this trial, specifically any toxicities of alisertib when administered as a single agent or in combination with other therapy over multiple courses and toxicities related to proton or photon radiation therapy. - To describe the patterns of local and distant failure in newly diagnosed patients (Strata B1, B2, B3, C1 and C2). Local control relative to primary-site radiation therapy, with criteria for infield, marginal, or distant failure will also be reported descriptively.
This phase III trial studies how well combination chemotherapy and surgery work in treating young patients with Wilms tumor. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Giving combination chemotherapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving it after surgery may kill any tumor cells that remain after surgery.