Retinal Detachment Clinical Trial
— MICAIOfficial title:
Multimodal Imaging in Vitreo-retinal Surgery and Macular Dystrophies: Biomarkers of Morpho-Functional Recovery by Artificial Intelligence
NCT number | NCT05747144 |
Other study ID # | 3680 |
Secondary ID | |
Status | Recruiting |
Phase | |
First received | |
Last updated | |
Start date | January 15, 2021 |
Est. completion date | January 16, 2025 |
The aim of the study is to identify morphological and functional biomarkers of post-operative recovery after vitreoretinal surgery, using decisional support systems (DSS), based on multimodal big-data analysis by means of machine learning techniques in daily clinical practice
Status | Recruiting |
Enrollment | 100 |
Est. completion date | January 16, 2025 |
Est. primary completion date | January 15, 2025 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Months and older |
Eligibility | Inclusion Criteria: - All patients to undergo vitreo-retinal surgery for: 1. Macular hole 2. Epiretinal membranes 3. Retinal detachment 4. Macular dystrophies (retinal pre-prosthesis) Exclusion Criteria: - Patients under 18 years of age will be excluded; patients in whom morphological examinations cannot be performed due to poor cooperation or opacity of the dioptric media (e.g. corneal pathology). Quality of morphological images inadequate for post acquisition processing (<6/10). |
Country | Name | City | State |
---|---|---|---|
Italy | Prof. Stanislao Rizzo | Rome |
Lead Sponsor | Collaborator |
---|---|
Fondazione Policlinico Universitario Agostino Gemelli IRCCS |
Italy,
Abed E, Placidi G, Campagna F, Federici M, Minnella A, Guerri G, Bertelli M, Piccardi M, Galli-Resta L, Falsini B. Early impairment of the full-field photopic negative response in patients with Stargardt disease and pathogenic variants of the ABCA4 gene. Clin Exp Ophthalmol. 2018 Jul;46(5):519-530. doi: 10.1111/ceo.13115. Epub 2017 Dec 28. — View Citation
Abramoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. Invest Ophthalmol Vis Sci. 2016 Oct 1;57(13):5200-5206. doi: 10.1167/iovs.16-19964. — View Citation
Acon D, Wu L. Multimodal Imaging in Diabetic Macular Edema. Asia Pac J Ophthalmol (Phila). 2018 Jan-Feb;7(1):22-27. doi: 10.22608/APO.2017504. Epub 2017 Jan 29. — View Citation
Bacherini D, Savastano MC, Dragotto F, Finocchio L, Lenzetti C, Bitossi A, Tartaro R, Giansanti F, Barca F, Savastano A, Caporossi T, Vannozzi L, Sodi A, Luca M, Faraldi F, Virgili G, Rizzo S. Morpho-Functional Evaluation of Full-Thickness Macular Holes by the Integration of Optical Coherence Tomography Angiography and Microperimetry. J Clin Med. 2020 Jan 15;9(1):229. doi: 10.3390/jcm9010229. — View Citation
Bae K, Lee SM, Kang SW, Kim ES, Yu SY, Kim KT. Atypical epiretinal tissue in full-thickness macular holes: pathogenic and prognostic significance. Br J Ophthalmol. 2019 Feb;103(2):251-256. doi: 10.1136/bjophthalmol-2017-311810. Epub 2018 Apr 26. — View Citation
Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA. 2018 Apr 3;319(13):1317-1318. doi: 10.1001/jama.2017.18391. No abstract available. — View Citation
Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, Dy J, Erdogmus D, Ioannidis S, Kalpathy-Cramer J, Chiang MF; Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2018 Jul 1;136(7):803-810. doi: 10.1001/jamaophthalmol.2018.1934. — View Citation
Burlina P, Joshi N, Pacheco KD, Freund DE, Kong J, Bressler NM. Utility of Deep Learning Methods for Referability Classification of Age-Related Macular Degeneration. JAMA Ophthalmol. 2018 Nov 1;136(11):1305-1307. doi: 10.1001/jamaophthalmol.2018.3799. — View Citation
Christensen UC. Value of internal limiting membrane peeling in surgery for idiopathic macular hole and the correlation between function and retinal morphology. Acta Ophthalmol. 2009 Dec;87 Thesis 2:1-23. doi: 10.1111/j.1755-3768.2009.01777.x. — View Citation
De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O'Donoghue B, Visentin D, van den Driessche G, Lakshminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, Chopra R, King D, Karthikesalingam A, Hughes CO, Raine R, Hughes J, Sim DA, Egan C, Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw PT, Suleyman M, Cornebise J, Keane PA, Ronneberger O. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018 Sep;24(9):1342-1350. doi: 10.1038/s41591-018-0107-6. Epub 2018 Aug 13. — View Citation
Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, Sadda SR, Sebag J, Spaide RF, Stalmans P. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology. 2013 Dec;120(12):2611-2619. doi: 10.1016/j.ophtha.2013.07.042. Epub 2013 Sep 17. — View Citation
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25. Erratum In: Nature. 2017 Jun 28;546(7660):686. — View Citation
Falsini B, Bardocci A, Porciatti V, Bolzani R, Piccardi M. Macular dysfunction in multiple sclerosis revealed by steady-state flicker and pattern ERGs. Electroencephalogr Clin Neurophysiol. 1992 Jan;82(1):53-9. doi: 10.1016/0013-4694(92)90182-h. — View Citation
Falsini B, Serrao S, Fadda A, Iarossi G, Porrello G, Cocco F, Merendino E. Focal electroretinograms and fundus appearance in nonexudative age-related macular degeneration. Quantitative relationship between retinal morphology and function. Graefes Arch Clin Exp Ophthalmol. 1999 Mar;237(3):193-200. doi: 10.1007/s004170050218. — View Citation
Fernandez-Avellaneda P, Breazzano MP, Fragiotta S, Xu X, Zhang Q, Wang RK, Freund KB. BACILLARY LAYER DETACHMENT OVERLYING REDUCED CHORIOCAPILLARIS FLOW IN ACUTE IDIOPATHIC MACULOPATHY. Retin Cases Brief Rep. 2022 Jan 1;16(1):59-66. doi: 10.1097/ICB.0000000000000943. — View Citation
Fukuyama H, Ishikawa H, Komuku Y, Araki T, Kimura N, Gomi F. Comparative analysis of metamorphopsia and aniseikonia after vitrectomy for epiretinal membrane, macular hole, or rhegmatogenous retinal detachment. PLoS One. 2020 May 8;15(5):e0232758. doi: 10.1371/journal.pone.0232758. eCollection 2020. — View Citation
Garrity ST, Sarraf D, Freund KB, Sadda SR. Multimodal Imaging of Nonneovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2018 Mar 20;59(4):AMD48-AMD64. doi: 10.1167/iovs.18-24158. — View Citation
Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, Peters A, Heid IM, Palm C, Weber BHF. A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography. Ophthalmology. 2018 Sep;125(9):1410-1420. doi: 10.1016/j.ophtha.2018.02.037. Epub 2018 Apr 10. — View Citation
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016 Dec 13;316(22):2402-2410. doi: 10.1001/jama.2016.17216. — View Citation
Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN; REDCap Consortium. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019 Jul;95:103208. doi: 10.1016/j.jbi.2019.103208. Epub 2019 May 9. — View Citation
Huang NT, Georgiadis C, Gomez J, Tang PH, Drayna P, Koozekanani DD, van Kuijk FJGM, Montezuma SR. Comparing fundus autofluorescence and infrared imaging findings of peripheral retinoschisis, schisis detachment, and retinal detachment. Am J Ophthalmol Case Rep. 2020 Mar 26;18:100666. doi: 10.1016/j.ajoc.2020.100666. eCollection 2020 Jun. — View Citation
Hubschman JP, Govetto A, Spaide RF, Schumann R, Steel D, Figueroa MS, Sebag J, Gaudric A, Staurenghi G, Haritoglou C, Kadonosono K, Thompson JT, Chang S, Bottoni F, Tadayoni R. Optical coherence tomography-based consensus definition for lamellar macular hole. Br J Ophthalmol. 2020 Dec;104(12):1741-1747. doi: 10.1136/bjophthalmol-2019-315432. Epub 2020 Feb 27. — View Citation
Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, Dong J, Prasadha MK, Pei J, Ting MYL, Zhu J, Li C, Hewett S, Dong J, Ziyar I, Shi A, Zhang R, Zheng L, Hou R, Shi W, Fu X, Duan Y, Huu VAN, Wen C, Zhang ED, Zhang CL, Li O, Wang X, Singer MA, Sun X, Xu J, Tafreshi A, Lewis MA, Xia H, Zhang K. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018 Feb 22;172(5):1122-1131.e9. doi: 10.1016/j.cell.2018.02.010. — View Citation
Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology. 2017 Aug;284(2):574-582. doi: 10.1148/radiol.2017162326. Epub 2017 Apr 24. — View Citation
Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express. 2017 Jun 23;8(7):3440-3448. doi: 10.1364/BOE.8.003440. eCollection 2017 Jul 1. — View Citation
Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology. 2018 Aug;125(8):1199-1206. doi: 10.1016/j.ophtha.2018.01.023. Epub 2018 Mar 2. — View Citation
Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019 May;20(5):e262-e273. doi: 10.1016/S1470-2045(19)30149-4. Erratum In: Lancet Oncol. 2019 Jun;20(6):293. — View Citation
Qi Y, Wang Z, Li SM, You Q, Liang X, Yu Y, Liu W. Effect of internal limiting membrane peeling on normal retinal function evaluated by microperimetry-3. BMC Ophthalmol. 2020 Apr 9;20(1):140. doi: 10.1186/s12886-020-01383-3. — View Citation
Reumueller A, Wassermann L, Salas M, Karantonis MG, Sacu S, Georgopoulos M, Drexler W, Pircher M, Pollreisz A, Schmidt-Erfurth U. Morphologic and Functional Assessment of Photoreceptors After Macula-Off Retinal Detachment With Adaptive-Optics OCT and Microperimetry. Am J Ophthalmol. 2020 Jun;214:72-85. doi: 10.1016/j.ajo.2019.12.015. Epub 2019 Dec 25. — View Citation
Rizzo S, Savastano A, Bacherini D, Savastano MC. Vascular Features of Full-Thickness Macular Hole by OCT Angiography. Ophthalmic Surg Lasers Imaging Retina. 2017 Jan 1;48(1):62-68. doi: 10.3928/23258160-20161219-09. — View Citation
Rizzo S, Tartaro R, Barca F, Caporossi T, Bacherini D, Giansanti F. INTERNAL LIMITING MEMBRANE PEELING VERSUS INVERTED FLAP TECHNIQUE FOR TREATMENT OF FULL-THICKNESS MACULAR HOLES: A COMPARATIVE STUDY IN A LARGE SERIES OF PATIENTS. Retina. 2018 Sep;38 Suppl 1:S73-S78. doi: 10.1097/IAE.0000000000001985. — View Citation
Sarao V, Veritti D, Borrelli E, Sadda SVR, Poletti E, Lanzetta P. A comparison between a white LED confocal imaging system and a conventional flash fundus camera using chromaticity analysis. BMC Ophthalmol. 2019 Nov 19;19(1):231. doi: 10.1186/s12886-019-1241-8. — View Citation
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunovic H. Artificial intelligence in retina. Prog Retin Eye Res. 2018 Nov;67:1-29. doi: 10.1016/j.preteyeres.2018.07.004. Epub 2018 Aug 1. — View Citation
Schmidt-Erfurth U, Waldstein SM, Klimscha S, Sadeghipour A, Hu X, Gerendas BS, Osborne A, Bogunovic H. Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence. Invest Ophthalmol Vis Sci. 2018 Jul 2;59(8):3199-3208. doi: 10.1167/iovs.18-24106. — View Citation
Smith AJ, Telander DG, Zawadzki RJ, Choi SS, Morse LS, Werner JS, Park SS. High-resolution Fourier-domain optical coherence tomography and microperimetric findings after macula-off retinal detachment repair. Ophthalmology. 2008 Nov;115(11):1923-9. doi: 10.1016/j.ophtha.2008.05.025. Epub 2008 Jul 31. — View Citation
Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018 May;64:1-55. doi: 10.1016/j.preteyeres.2017.11.003. Epub 2017 Dec 8. — View Citation
Stanga PE, Williams JI, Shaarawy SA, Agarwal A, Venkataraman A, Kumar DA, You TT, Hope RS. FIRST-IN-HUMAN CLINICAL STUDY TO INVESTIGATE THE EFFECTIVENESS AND SAFETY OF PARS PLANA VITRECTOMY SURGERY USING A NEW HYPERSONIC TECHNOLOGY. Retina. 2020 Jan;40(1):16-23. doi: 10.1097/IAE.0000000000002365. — View Citation
Sun P, Tandias RM, Yu G, Arroyo JG. SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FINDINGS AND VISUAL OUTCOME AFTER TREATMENT FOR VITREOMACULAR TRACTION. Retina. 2019 Jun;39(6):1054-1060. doi: 10.1097/IAE.0000000000002116. — View Citation
Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng CY, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017 Dec 12;318(22):2211-2223. doi: 10.1001/jama.2017.18152. — View Citation
Zur D, Iglicki M, Busch C, Invernizzi A, Mariussi M, Loewenstein A; International Retina Group. OCT Biomarkers as Functional Outcome Predictors in Diabetic Macular Edema Treated with Dexamethasone Implant. Ophthalmology. 2018 Feb;125(2):267-275. doi: 10.1016/j.ophtha.2017.08.031. Epub 2017 Sep 19. — View Citation
* Note: There are 40 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Predictivity of morphological-functional radiomic data | Rate of predictivity of morphological-functional radiomic data to establish the grade of recovery in the post-operative period by means of an artificial intelligence (AI) machine learning model. | 3 years | |
Secondary | Identify predictive differences according to diagnosis | Subdivision into subgroups in order to identify predictive differences according to diagnosis | 3 years | |
Secondary | Correlating with the age of patients | Identify predictive differences according to diagnosis and correlate them with the age of patients | 3 years | |
Secondary | Correlate with age of onset of disease | Identify predictive differences according to diagnosis and correlate them with the age of onset of disease | 3 years |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03332758 -
Inflammasomes in Cell Death in FTMH, ERM, and RRD
|
||
Completed |
NCT03660384 -
Silicone Oil Versus Gas in PDR Patients Undergoing Vitrectomy
|
N/A | |
Recruiting |
NCT03713268 -
Intraoperative OCT Guidance of Intraocular Surgery II
|
||
Completed |
NCT04535622 -
Efficacy of Exercise Program for Facedown Posture-related Pain After Retinal Surgery
|
N/A | |
Recruiting |
NCT05863312 -
REtinal Detachment Outcomes Study
|
N/A | |
Recruiting |
NCT05561569 -
Air Versus Gas Tamponade in Primary Retinal Detachment
|
N/A | |
Not yet recruiting |
NCT05538156 -
Internal Limiting Membrane Peeling in Retinal Detachment Surgery
|
N/A | |
Completed |
NCT03046719 -
Subconjunctiva Bupivacaine as Analgesia in Intravitreal Silicone Oil Removal
|
N/A | |
Recruiting |
NCT01261533 -
Flexibility, Efficacy, and Safety of a Foldable Capsular Vitreous Body in the Treatment of Severe Retinal Detachment
|
Phase 1 | |
Terminated |
NCT02068625 -
Rasagiline (Azilect) - Neuroprotection for Macula-off Retinal Detachment
|
Phase 4 | |
Completed |
NCT00000140 -
The Silicone Study
|
Phase 3 | |
Recruiting |
NCT05543018 -
Effect of Intraocular Tamponade on Visual Perception
|
N/A | |
Not yet recruiting |
NCT04518696 -
Suprachoroidal Buckling for the Management of Rhegmatogenous Retinal Detachment
|
N/A | |
Completed |
NCT03321253 -
Changes of Macular Pigment and Parameters of Eyes After YAG Laser Treatment in Cases With Capsule Opacification
|
N/A | |
Completed |
NCT06166914 -
Efficacy of 5-fluorouracil and Low Molecular Weight Heparin in High-risk Pediatric Retinal Detachment
|
N/A | |
Enrolling by invitation |
NCT05566626 -
Retinal Oxygenation Estimation Trial With Mantis Photonics Hyperspectral Camera
|
N/A | |
Not yet recruiting |
NCT03631108 -
Feasibility Study and Preliminary Application Study on Iris OCTA
|
||
Recruiting |
NCT02201706 -
Multi-electrocoagulation Retinectomy for Retinal Re-detachment in Silicone Oil Filled Eye
|
N/A | |
Completed |
NCT03218371 -
Scleral Self-indentation Chandelier-assisted Peripheral Vitrectomy Under Air Rhegmatogenous Retinal Detachment.
|
N/A | |
Completed |
NCT00000154 -
Diabetic Retinopathy Vitrectomy Study (DRVS)
|
Phase 3 |