Clinical Trials Logo

Respiratory Muscles clinical trials

View clinical trials related to Respiratory Muscles.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT05459116 Recruiting - Clinical trials for Respiration, Artificial

Visualization of Inspiratory Effort and Respiratory Mechanics to Promote Lung- and Diaphragm Protective Ventilation

VIREM
Start date: September 21, 2022
Phase: N/A
Study type: Interventional

This is a multicentre prospective cohort trial in adult and pediatric ICU patients. The investigators will measure the effect of a patient's inspiratory effort during mechanical ventilation on the lungs and diaphragm. The investigators will daily (for a maximum of 8 days) measure esophageal pressures with a balloon catheter to quantify inspiratory effort and respiratory muscle function, and perform daily ultrasound measurements of the diaphragm and the lungs. The investigators hypothesize that a small inspiratory effort will result in the preservation of diaphragm function and have no adverse effect on lung function.

NCT ID: NCT05380687 Recruiting - Respiratory Failure Clinical Trials

Time Course of Neuro-ventilatory Efficiency During a Spontaneous Breathing Training

TONES
Start date: June 15, 2022
Phase: N/A
Study type: Interventional

The TONES trial aims to evaluate the neuroventilatory efficiency (NVE = tidal volume / peak voltage of diaphragm contraction) measured during a zero-assist manoeuvre (ZAM, i.e. with PEEP but without pressure support). This novel parameter, NVE-ZAM, will be studied in a blocked, crossover, repeated measures design. Possible confounders, such as activity of respiratory muscles other than the diaphragm, are included. The investigators hypothesized that - the NVE during a zero-assist maneuver has a low variability and high repeatability at the same level of PEEP (within subjects, within blocks) - NVE-ZAM trends differ between participants (between subjects, within blocks) and between PEEP levels (within subjects, between blocks) The primary aim is to study the variability and repeatability of the NVE-ZAM within subjects and within blocks. Additionally, the effect of PEEP, muscle fatigue and recruitment of the accessory and expiratory muscles of respiration on the NVE-ZAM will be studied in an exploratory analysis (in multiple combinations of within and between subjects and/or blocks).

NCT ID: NCT04679402 Recruiting - Respiratory Muscles Clinical Trials

Diaphragm Function and Diver Endurance

Start date: April 14, 2022
Phase: N/A
Study type: Interventional

This project will test the following hypotheses: 1. Training of the inspiratory muscles increases underwater endurance and reduces hypercapnia in divers. 2. Inspiratory muscle training while breathing low concentration carbon monoxide (200 ppm) for 30 minutes daily improves diaphragm performance to a greater degree than the same training breathing air. 3. Inspiratory muscle training increases hypercapnia ventilatory response (gain) in those individuals with a low gain. 4. Variability in oxygen (O2) and carbon dioxide (CO2) permeability of erythrocyte membranes is a determining factor in underwater exercise performance.