Clinical Trials Logo

Respiratory Insufficiency clinical trials

View clinical trials related to Respiratory Insufficiency.

Filter by:

NCT ID: NCT06004206 Completed - Respiratory Failure Clinical Trials

Patient-ventilator Interaction During NIV With Helmet: a Comparison Between PSV and the New NIV NPS Software

Start date: October 1, 2020
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to evaluate if neural pressure support ventilation is able to improve patient-ventilator synchrony, in ICU patients undergoing non-invasive ventilation (NIV). The main question it aims to answer is: • Is neural pressure support ventilation better than the pressure support ventilation with respect to patient-ventilator synchrony during helmet NIV? Researchers will compare neural pressure support ventilation versus pressure support ventilation (Gold standard assisted mode in Europe) to see if the new mode improve patient-ventilator synchrony.

NCT ID: NCT06002841 Not yet recruiting - Pneumonia Clinical Trials

Extracellular Vesicles From Mesenchymal Cells in the Treatment of Acute Respiratory Failure

Start date: February 1, 2024
Phase: Phase 1/Phase 2
Study type: Interventional

This is a phase I/II, randomized, double-blind, placebo-controlled clinical trial that will evaluate the safety and potential efficacy of therapy with extracellular vesicles (EVs) obtained from mesenchymal stromal cells (MSCs), patients with moderate to severe acute respiratory distress syndrome due to COVID-19 or other etiology. Participants will be allocated to receive EVs obtained from MSCs or placebo (equal volume of Plasma-Lyte A). Blinding will cover the participants, the multidisciplinary intensive care team and the investigators.

NCT ID: NCT05991778 Completed - Septic Shock Clinical Trials

Bioelectrical Impedance in Monitoring Hyperhydration and Polyneuromyopathy in Critically Ill Patients

Start date: March 1, 2021
Phase:
Study type: Observational

This prospective, blinded observational clinical study was aimed to determine the effect of hyperhydration and muscle loss measured by Bioelectrical impedance vector analysis (BIVA) on mortality. The aim was to compare hydratation parameters measured by BIVA: OHY, Extracellular Water (ECW) / Total Body Wate (TBW) and quadrant, vector length, phase angle (PA) with cumulative fluid balance (CFB) recording (input-output) in their ability in predicting mortality as the abilities of the prognostic markers PA (BIVA), Acute Physiology and Chronic Health Evaluation II (APACHE II - score) and presepsin (serum Cluster of Differentiation (CD) 14-ST). The investigators also compared BIVA nutritional indicators (SMM, fat) with BMI and laboratory parameters (albumin, prealbumin and C-reactive protein (CRP) inflammation parameters) in the prediction of mortality. An important goal was to evaluate the usability of the BIVA method in critically ill patients on extracorporeal circulation, to compare the impedance data of the extracorporeal membrane oxygenation (ECMO) and non-ECMO groups.

NCT ID: NCT05991258 Recruiting - Clinical trials for Acute Respiratory Failure

Effect of End-inspiratory Airway Pressure Measurements on the Risk of VILI in Ventilated Patients

P1P2Decay
Start date: March 9, 2023
Phase:
Study type: Observational

Mechanical ventilation may be associated with ventilator-induced lung injury (VILI). Several respiratory variables have been employed to estimate the risk of VILI, such as tidal volumes, plateau pressure, driving pressure, and mechanical power. This dissipation of energy during ventilation can contribute to VILI through two mechanisms, stress relaxation and pendelluft, which can be estimated at the bedside by applying an end-inspiratory pause and evaluating the slow decrease in airway pressure going from the pressure corresponding to zero flow (called pressure P1) and the final pressure at the end of the pause (called plateau pressure P2). The choice of measuring the end-inspiratory airway pressure (PawEND-INSP) at a fixed, although relatively early, timepoint, i.e., after 0.5 second from the beginning of the pause, as prescribed by the indications of the Acute Respiratory Distress Syndrome (ARDS) Network, while assessing the risk of VILI associated with the elastic pressure of the respiratory system, may not reflect the harmful potential associated with the viscoelastic properties of the respiratory system. It is still unclear whether an PawEND-INSP measured at the exact moment of zero flow (P1) is more reliable in the calculation of those variables, such as ΔP and MP, associated with the outcomes of patients with and without ARDS, as compared to the pressure measured at the end of the end-inspiratory pause (plateau pressure P2). This multicenter prospective observational study aims to evaluate whether the use of P1, as compared to P2, affects the calculation of ΔP and MP. The secondary objectives are: 1) verify whether in patients with a lung parenchyma characterized by greater parenchymal heterogeneity, as assessed by EIT, P1-P2 decay is greater than in patients with greater parenchymal homogeneity; 2) evaluate whether patients with both ΔP values calculated using P1 and P2 <15 cmH2O (or both MP values calculated using P1 and P2 <17 J/min) develop shorter duration of invasive mechanical ventilation, shorter ICU and hospital length of stay and lower ICU and hospital mortality, as compared to patients with only ΔP calculated with P1 ≥ 15 cmH2O (or only MP calculated with P1 ≥ 17 J/min) and patients with both ΔP values calculated using P1 and P2 ≥ 15 cmH2O (or both MP values calculated using P1 and P2 ≥ 17 J/min).

NCT ID: NCT05990348 Recruiting - Respiratory Failure Clinical Trials

Estimation of the Diaphragm Electrical Activity and Intercostal Thickening Fraction During Different Pattern of Mechanical Ventilation: PSV Versus NAVA

InterThick
Start date: July 1, 2022
Phase:
Study type: Observational

the introduction of new MV modalities has shown promising results in reducing the incidence of weaning failure, mainly due to a more physiologic approach which allows respiratory muscle preservation. Among them, the Neurally Adjust Ventilatory Assist (NAVA) seemed to be associated with lower incidence of weaning failure and subsequent duration of mechanical ventilation, compared to standard modalities like the Pressure Support Ventilation (PSV) . Moreover, NAVA allows the evaluation of the diaphragm electrical activity (EAdi), an index of diaphragmatic neural respiratory drive. However, no study has compared TFic values during PSV and NAVA modalities in patients with difficult weaning from MV admitted in ICU.

NCT ID: NCT05990101 Recruiting - Respiratory Failure Clinical Trials

HYPoxaEmic Respiratory Failure and Awake Prone Ventilation

Hyper-AP
Start date: May 12, 2023
Phase: N/A
Study type: Interventional

The goal of this prospective multi-centre randomised controlled trial is to determine if addition of awake prone positioning to standard oxygen, high flow oxygen therapy and non-invasive ventilation may reduce the rates of endotracheal intubation and mechanical ventilation.

NCT ID: NCT05989971 Recruiting - Clinical trials for Respiratory Failure With Hypercapnia

The Effect of Continuous Renal Replacement Therapy on the Efficiency of Extracorporeal CO2 Removal

Start date: April 24, 2023
Phase:
Study type: Observational

In the design of extracorporeal carbon dioxide removal (ECCO2R) combined with continuous renal replacement therapy (CRRT) equipment, in model of continuous veno-venous hemofiltration (CVVH) , the HCO3- concentration in the pre membrane lung blood is diluted by the replacement solution, and a decrease in HCO3- leads to a decrease in PCO2. On the other hand, in continuous veno-venous hemodialysis (CVVHD), HCO3- in post membrane blood will exchange interaction. The exchange results of HCO3- determine the impact of CVVHD on the CO2 removal efficiency of the ECCO2R combined CRRT system. This study aims to investigate the effects of CVVH and CVVHD on in vitro CO2 clearance efficiency.

NCT ID: NCT05978154 Recruiting - Sepsis Clinical Trials

Thigh Muscle Mass and Muscle Wasting in Patients in the Emergency Department

Start date: July 28, 2023
Phase:
Study type: Observational

The goal of this observational study is to evaluate whether thigh muscle mass and muscle wasting are associated with mortality in patients who visit the emergency department. The main questions it aims to answer are: - Is thigh muscle mass associated with mortality in patient who visit the emergency department? - Does muscle wasting exist during staying in the emergency department? - Is muscle wasting associated with mortality in patient who visit the emergency department? Participants will be evaluated for serial thigh muscle mass using point-of-care ultrasound at the emergency department.

NCT ID: NCT05964244 Not yet recruiting - Clinical trials for Noninvasive Ventilation

Impact of Noninvasive With Expiratory Washout on Respiratory Rate of Patients With Acute Hypercapnic Respiratory Failure

Start date: November 2023
Phase: N/A
Study type: Interventional

This study will determine if NIV using the Vela investigational mask with expiratory washout of the upper airway more effectively reduces respiratory rate in acute patients with hypercapnic respiratory failure. Patients admitted to hospital with acute respiratory failure (ARF) will be assessed for hypercapnic ARF by normal hospital protocols. Patients requiring noninvasive ventilation (NIV) will be set up on NIV as prescribed per standard of care. Enrollment onto the investigation will occur after the patient has been allowed to stabilize on NIV . Patients that meet the inclusion/exclusion criteria will be approached for consent. Investigation participants will receive two masks in random order; 1. NIV for one hour with the investigational mask (Vela) 2. NIV for one hour with the standard mask (Nivairo). Participants will have their physiological respiratory parameters recorded.

NCT ID: NCT05964075 Recruiting - Respiratory Failure Clinical Trials

RASECAL-Bronchoscopic Ambusampler

Rasecal
Start date: January 14, 2022
Phase:
Study type: Observational

Prospective, multi-centre, open labelled, 1:1randomized controlled study.