Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT05017727
Other study ID # 298164
Secondary ID
Status Completed
Phase
First received
Last updated
Start date October 5, 2021
Est. completion date January 17, 2023

Study information

Verified date September 2023
Source King's College Hospital NHS Trust
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Ventilated neonates frequently require supplementary oxygen to allow for adequate oxygen delivery to the tissues and normal cell metabolism. Oxygen treatment should be monitored carefully as both excessive and inadequate dosing can have detrimental effects for the infants. Hypoxia (giving too little oxygen) increases mortality and later disability whereas hyperoxia (giving too much oxygen) increases the risk of complications such as retinopathy of prematurity and lung disease. Although very preterm and low birth weight infants represent the majority of ventilated neonates, more mature infants may also require mechanical ventilation at birth and provision of supplementary oxygen. Therefore, they may suffer from complications related to hypoxia or hyperoxia. Hence, their oxygen saturation levels and the amount of the inspired oxygen concentration provided should be continuously monitored. Oxygen control is traditionally monitored and adjusted manually by the nurse looking after the infant. Closed-loop automated oxygen control (CLAC) is a more recent approach that involves the use of a computer software incorporated into the ventilator. The software uses an algorithm that automatically adjusts the amount of inspired oxygen to maintain oxygen saturation levels in a target range. Evidence suggests that CLAC increases the time spent in the desired oxygen target range, decreases the duration of hypoxia and hyperoxia and reduces the number of manual adjustments required by clinical staff. However previous studies have been limited to very small infants. With this study the investigators aim to evaluate the effectiveness of CLAC in ventilated infants born at 34 weeks gestation and beyond. The achievement of oxygen saturation targets and the number of manual adjustments required will be compared between periods of CLAC and manual control in a cohort of patients that has not been included in previous studies and could also benefit from the intervention. The investigators will also evaluate if CLAC reduces investigations performed to ventilated babies(blood gases, X-rays).


Description:

This will be a randomised controlled crossover study. The investigators aim to recruit a minimum of 31 ventilated infants born at 34 weeks completed gestation and above and admitted to the Neonatal Intensive Care Unit at King's College Hospital over one year. Participants will undergo two monitoring periods each lasting 12 hours (8:00am-20:00pm): one with standard manually controlled oxygen and one with closed-loop automated oxygen control. Randomisation will be used to determine whether the first period will be manual or closed-loop automated oxygen control. The two monitoring periods will take place on two consecutive days to allow for clinical conditions to remain as stable as possible. Infants with known congenital cyanotic heart disease will be excluded from the study as well as those undergoing surgery or any planned procedures during the monitoring period. Informed written consent will be requested from the parents or legal guardians of the infants and the attending Neonatal Consultant will be requested to verbally assent to the study. Randomisation of eligible infants whose parents consent to the study will be performed using an online randomisation generator to determine whether the first monitoring period will be manual adjustment or closed-loop automated oxygen control ("intervention" period). Patients will be ventilated using SLE6000 ventilators. Ventilation settings will be manually adjusted by the clinical team as per unit's protocol. During the intervention period, in addition to standard care, infants will be also connected to the OxyGenie closed-loop oxygen saturation monitoring software (SLE). This software uses oxygen saturations from the SpO2 probe attached to the neonate, fed into an algorithm, to automatically adjust the percentage of inspired oxygen to maintain oxygen saturations within the target range. Manual adjustments including the percentage of FiO2 will be allowed at any point during the study including the period of automated oxygen control if deemed appropriate by the clinical team. Oxygen saturation levels and automatic adjustments to the inspired oxygen concentration will be captured by the ventilator software. Manual adjustments will be recorded during both monitoring periods. In addition to data collected from the ventilator, medical notes will be reviewed to determine any adverse events or clinical interventions to participants during the study. The number of blood gas samples taken and chest radiographs performed during each monitoring period will also be recorded.


Recruitment information / eligibility

Status Completed
Enrollment 31
Est. completion date January 17, 2023
Est. primary completion date January 17, 2023
Accepts healthy volunteers
Gender All
Age group 34 Weeks and older
Eligibility Inclusion Criteria: - Infants born at 34 weeks completed gestation and above requiring mechanical ventilation and admitted to King's NICU - Any gender, ethnicity or other comorbidities Exclusion Criteria: - Preterm infants less than 34 weeks gestation - Infants with cyanotic congenital heart disease - Infants undergoing planned procedures or surgery during the monitoring period - Infants on high frequency oscillatory ventilation (HFOV)

Study Design


Intervention

Device:
Closed-loop automated oxygen control with Oxygenie Auto-O2 software (SLE6000)
The 'Oxygenie' is a closed loop automated oxygen control system that has been incorporated into a software module for the SLE6000 infant ventilators. This software control system allows targeting SpO2 values by controlling FiO2.

Locations

Country Name City State
United Kingdom King's College Hospital NHS Foundation Trust London

Sponsors (2)

Lead Sponsor Collaborator
King's College Hospital NHS Trust King's College London

Country where clinical trial is conducted

United Kingdom, 

References & Publications (27)

Angus DC, Linde-Zwirble WT, Clermont G, Griffin MF, Clark RH. Epidemiology of neonatal respiratory failure in the United States: projections from California and New York. Am J Respir Crit Care Med. 2001 Oct 1;164(7):1154-60. doi: 10.1164/ajrccm.164.7.2012126. — View Citation

Askie LM, Darlow BA, Finer N, Schmidt B, Stenson B, Tarnow-Mordi W, Davis PG, Carlo WA, Brocklehurst P, Davies LC, Das A, Rich W, Gantz MG, Roberts RS, Whyte RK, Costantini L, Poets C, Asztalos E, Battin M, Halliday HL, Marlow N, Tin W, King A, Juszczak E, Morley CJ, Doyle LW, Gebski V, Hunter KE, Simes RJ; Neonatal Oxygenation Prospective Meta-analysis (NeOProM) Collaboration. Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. JAMA. 2018 Jun 5;319(21):2190-2201. doi: 10.1001/jama.2018.5725. Erratum In: JAMA. 2018 Jul 17;320(3):308. — View Citation

Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM. Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med. 2003 Sep 4;349(10):959-67. doi: 10.1056/NEJMoa023080. — View Citation

Baba L, McGrath JM. Oxygen free radicals: effects in the newborn period. Adv Neonatal Care. 2008 Oct;8(5):256-64. doi: 10.1097/01.ANC.0000338015.25911.8a. — View Citation

Bhat P, Chowdhury O, Shetty S, Hannam S, Rafferty GF, Peacock J, Greenough A. Volume-targeted versus pressure-limited ventilation in infants born at or near term. Eur J Pediatr. 2016 Jan;175(1):89-95. doi: 10.1007/s00431-015-2596-3. Epub 2015 Aug 4. — View Citation

BOOST-II Australia and United Kingdom Collaborative Groups; Tarnow-Mordi W, Stenson B, Kirby A, Juszczak E, Donoghoe M, Deshpande S, Morley C, King A, Doyle LW, Fleck BW, Davis PG, Halliday HL, Hague W, Cairns P, Darlow BA, Fielder AR, Gebski V, Marlow N, Simmer K, Tin W, Ghadge A, Williams C, Keech A, Wardle SP, Kecskes Z, Kluckow M, Gole G, Evans N, Malcolm G, Luig M, Wright I, Stack J, Tan K, Pritchard M, Gray PH, Morris S, Headley B, Dargaville P, Simes RJ, Brocklehurst P. Outcomes of Two Trials of Oxygen-Saturation Targets in Preterm Infants. N Engl J Med. 2016 Feb 25;374(8):749-60. doi: 10.1056/NEJMoa1514212. Epub 2016 Feb 10. — View Citation

Chowdhury O, Greenough A. Neonatal ventilatory techniques - which are best for infants born at term? Arch Med Sci. 2011 Jun;7(3):381-7. doi: 10.5114/aoms.2011.23400. Epub 2011 Jul 11. — View Citation

Chowdhury O, Rafferty GF, Lee S, Hannam S, Milner AD, Greenough A. Volume-targeted ventilation in infants born at or near term. Arch Dis Child Fetal Neonatal Ed. 2012 Jul;97(4):F264-6. doi: 10.1136/archdischild-2011-301041. Epub 2011 Dec 22. — View Citation

Chowdhury O, Wedderburn CJ, Lee S, Hannam S, Greenough A. Respiratory support practices in infants born at term in the United Kingdom. Eur J Pediatr. 2012 Nov;171(11):1633-8. doi: 10.1007/s00431-012-1784-7. Epub 2012 Jul 22. — View Citation

Clark RH. The epidemiology of respiratory failure in neonates born at an estimated gestational age of 34 weeks or more. J Perinatol. 2005 Apr;25(4):251-7. doi: 10.1038/sj.jp.7211242. — View Citation

Colin AA, McEvoy C, Castile RG. Respiratory morbidity and lung function in preterm infants of 32 to 36 weeks' gestational age. Pediatrics. 2010 Jul;126(1):115-28. doi: 10.1542/peds.2009-1381. Epub 2010 Jun 7. — View Citation

Consortium on Safe Labor; Hibbard JU, Wilkins I, Sun L, Gregory K, Haberman S, Hoffman M, Kominiarek MA, Reddy U, Bailit J, Branch DW, Burkman R, Gonzalez Quintero VH, Hatjis CG, Landy H, Ramirez M, VanVeldhuisen P, Troendle J, Zhang J. Respiratory morbidity in late preterm births. JAMA. 2010 Jul 28;304(4):419-25. doi: 10.1001/jama.2010.1015. — View Citation

Dani C. Automated control of inspired oxygen (FiO2 ) in preterm infants: Literature review. Pediatr Pulmonol. 2019 Mar;54(3):358-363. doi: 10.1002/ppul.24238. Epub 2019 Jan 10. — View Citation

Dargaville PA, Sadeghi Fathabadi O, Plottier GK, Lim K, Wheeler KI, Jayakar R, Gale TJ. Development and preclinical testing of an adaptive algorithm for automated control of inspired oxygen in the preterm infant. Arch Dis Child Fetal Neonatal Ed. 2017 Jan;102(1):F31-F36. doi: 10.1136/archdischild-2016-310650. Epub 2016 Sep 15. — View Citation

Gouyon JB, Ribakovsky C, Ferdynus C, Quantin C, Sagot P, Gouyon B; Burgundy Perinatal Network. Severe respiratory disorders in term neonates. Paediatr Perinat Epidemiol. 2008 Jan;22(1):22-30. doi: 10.1111/j.1365-3016.2007.00875.x. — View Citation

Hagadorn JI, Furey AM, Nghiem TH, Schmid CH, Phelps DL, Pillers DA, Cole CH; AVIOx Study Group. Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks' gestation: the AVIOx study. Pediatrics. 2006 Oct;118(4):1574-82. doi: 10.1542/peds.2005-0413. — View Citation

Lakshminrusimha S, Konduri GG, Steinhorn RH. Considerations in the management of hypoxemic respiratory failure and persistent pulmonary hypertension in term and late preterm neonates. J Perinatol. 2016 Jun;36 Suppl 2:S12-9. doi: 10.1038/jp.2016.44. — View Citation

Pike KC, Lucas JS. Respiratory consequences of late preterm birth. Paediatr Respir Rev. 2015 Jun;16(3):182-8. doi: 10.1016/j.prrv.2014.12.001. Epub 2014 Dec 8. — View Citation

Ramadan G, Paul N, Morton M, Peacock JL, Greenough A. Outcome of ventilated infants born at term without major congenital abnormalities. Eur J Pediatr. 2012 Feb;171(2):331-6. doi: 10.1007/s00431-011-1549-8. Epub 2011 Aug 11. — View Citation

Reynolds PR, Miller TL, Volakis LI, Holland N, Dungan GC, Roehr CC, Ives K. Randomised cross-over study of automated oxygen control for preterm infants receiving nasal high flow. Arch Dis Child Fetal Neonatal Ed. 2019 Jul;104(4):F366-F371. doi: 10.1136/archdischild-2018-315342. Epub 2018 Nov 21. — View Citation

Saugstad OD, Aune D. In search of the optimal oxygen saturation for extremely low birth weight infants: a systematic review and meta-analysis. Neonatology. 2011;100(1):1-8. doi: 10.1159/000322001. Epub 2010 Dec 9. — View Citation

Sink DW, Hope SA, Hagadorn JI. Nurse:patient ratio and achievement of oxygen saturation goals in premature infants. Arch Dis Child Fetal Neonatal Ed. 2011 Mar;96(2):F93-8. doi: 10.1136/adc.2009.178616. Epub 2010 Oct 30. — View Citation

Sturrock S, Ambulkar H, Williams EE, Sweeney S, Bednarczuk NF, Dassios T, Greenough A. A randomised crossover trial of closed loop automated oxygen control in preterm, ventilated infants. Acta Paediatr. 2021 Mar;110(3):833-837. doi: 10.1111/apa.15585. Epub 2020 Oct 6. — View Citation

Sturrock S, Williams E, Dassios T, Greenough A. Closed loop automated oxygen control in neonates-A review. Acta Paediatr. 2020 May;109(5):914-922. doi: 10.1111/apa.15089. Epub 2019 Nov 27. — View Citation

Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics. 2000 Feb;105(2):295-310. doi: 10.1542/peds.105.2.295. — View Citation

Walsh BK, Smallwood CD. Pediatric Oxygen Therapy: A Review and Update. Respir Care. 2017 Jun;62(6):645-661. doi: 10.4187/respcare.05245. — View Citation

Williams LZJ, McNamara D, Alsweiler JM. Intermittent Hypoxemia in Infants Born Late Preterm: A Prospective Cohort Observational Study. J Pediatr. 2019 Jan;204:89-95.e1. doi: 10.1016/j.jpeds.2018.08.048. Epub 2018 Oct 1. — View Citation

* Note: There are 27 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary The decrease in the percentage of time spent in extremes of hypoxia That will be assessed by evaluating the infant's respiratory status. Over 24 hours
Secondary The increase in the percentage of time spent within target oxygen saturation ranges (94-98%) This will be assessed by evaluating the infant's respiratory status. Over 24 hours
Secondary The reduction in the number of manual adjustments required to the inspired oxygen concentration That will be assessed by reviewing the infant's medical records Over 24 hours
Secondary The reduction in the number of blood gases and chest radiographs That will be assessed by reviewing the infant's medical records Over 24 hours
See also
  Status Clinical Trial Phase
Withdrawn NCT03376204 - Pain Mechanisms in Patients With Bronchiectasis
Not yet recruiting NCT05902702 - Isotonic Saline for Children With Bronchiolitis N/A
Recruiting NCT05246098 - REVIVe: Frailty, Rehabilitation, and Outcomes in Critically Ill Adult and Pediatric Survivors of COVID-19 or ARI
Completed NCT04467190 - Investigation of Inflammacheck to Measure Exhaled Breath Condensate Hydrogen Peroxide in Respiratory Conditions
Not yet recruiting NCT05374148 - Respiratory Health Problems Among Workers in Ferrosilicon Alloys Industry in Aswan-Eygpt.
Recruiting NCT04502368 - Fiberoptic Bronchoscopy and Bronchoalveolar Lavage in Critically Ill Ventilated Patients
Recruiting NCT05775952 - Airway Remodeling and Rhinovirus in Asthmatics
Active, not recruiting NCT02681848 - What Are the Effects of Varenicline Compared With Nicotine Replacement Therapy on Long Term Smoking Cessation and Clinically Important Outcomes?
Recruiting NCT06002685 - Partners in Children's Health (CSN): A Randomized Trial of an Attachment Based Intervention N/A
Enrolling by invitation NCT03319446 - Collection of Anonymized Samples N/A
Recruiting NCT04287959 - SWISH Trial (Strategies for Weaning Infants on Supportive High Flow) N/A
Completed NCT04607330 - Protein Top-up Acceptability Study for Patients With Increased Protein Needs N/A
Completed NCT03334916 - A Clinical Trial to Evaluate the Efficacy and Safety of YMC026 in Respiratory Disease Patients Phase 4
Completed NCT04649736 - Home-based Respiratory Physiotherapy and Telephone-Based Psychological Support in Severe COVID-19 Patients N/A
Completed NCT03661801 - Novel Pleural Fluid, Biopsy and Serum Biomarkers for the Investigation of Pleural Effusions
Enrolling by invitation NCT03322254 - How Respiratory Pathogens Panel Results Affect Patients' Plan of Care
Recruiting NCT03937583 - Screening for Cancer in Patients With Unprovoked VTE Phase 4
Not yet recruiting NCT06026163 - Caffeine as an Adjuvant Therapy for Late Preterm Infants With Respiratory Distress Phase 2/Phase 3
Completed NCT04581096 - Mapping COVID-19 Spread in a Tertiary Hospital
Completed NCT03654092 - Home-based Exercise Training for COPD Patients (HOMEX-2) N/A