Rehabilitation Clinical Trial
Official title:
The Effects of Inspiratory Muscle Training Immediatley After Lung Transplantation: a Randomized Controlled Trial
NCT number | NCT05309551 |
Other study ID # | 2021H0310 |
Secondary ID | |
Status | Recruiting |
Phase | N/A |
First received | |
Last updated | |
Start date | April 20, 2022 |
Est. completion date | December 2024 |
Following lung transplantation (LTX), patients may exhibit respiratory and skeletal muscle weakness that will affect exercise capacity, increase dyspnea and fatigue, limit activities of daily living (ADL) and decrease quality of life. Inspiratory muscle training (IMT) has been extensively studied in a variety of non-LTX populations and research has shown that IMT improves exercise capacity, diaphragmatic thickness, and reduced dyspnea during activities of daily living and improved quality of life in patients with advanced lung disease. The aim of this randomized controlled study is to investigate the benefits of providing inspiratory muscle training via use of an inspiratory muscle trainer device in addition to standard physical therapy in the acute phase of rehabilitation following LTX. Patients targeted for enrollment will be those with any type of advanced lung disease requiring LTX with the objective of demonstrating improvements in respiratory muscle recovery, perceived dyspnea, severity of fatigue, and overall functional status following the transplant procedure.
Status | Recruiting |
Enrollment | 90 |
Est. completion date | December 2024 |
Est. primary completion date | July 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Participant has personally signed and dated informed consent form indicating understanding of all pertinent aspects of the study - Active on the waiting list for lung transplantation - Able to ambulate pre-transplant (not bed/wheelchair bound) with or without assistive device Exclusion Criteria: - Already participating in a regular IMT program - Impaired cognition with inability to follow commands |
Country | Name | City | State |
---|---|---|---|
United States | The Ohio State University Wexner Medical Center | Columbus | Ohio |
Lead Sponsor | Collaborator |
---|---|
Ohio State University |
United States,
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002 Jul 1;166(1):111-7. doi: 10.1164/ajrccm.166.1.at1102. No abstract available. Erratum In: Am J Respir Crit Care Med. 2016 May 15;193(10):1185. — View Citation
Bernabeu-Mora R, Medina-Mirapeix F, Llamazares-Herran E, Garcia-Guillamon G, Gimenez-Gimenez LM, Sanchez-Nieto JM. The Short Physical Performance Battery is a discriminative tool for identifying patients with COPD at risk of disability. Int J Chron Obstruct Pulmon Dis. 2015 Dec 3;10:2619-26. doi: 10.2147/COPD.S94377. eCollection 2015. Erratum In: Int J Chron Obstruct Pulmon Dis. 2016;11:623. — View Citation
Bestall JC, Paul EA, Garrod R, Garnham R, Jones PW, Wedzicha JA. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax. 1999 Jul;54(7):581-6. doi: 10.1136/thx.54.7.581. — View Citation
Bissett B, Gosselink R, van Haren FMP. Respiratory Muscle Rehabilitation in Patients with Prolonged Mechanical Ventilation: A Targeted Approach. Crit Care. 2020 Mar 24;24(1):103. doi: 10.1186/s13054-020-2783-0. — View Citation
Brocki BC, Andreasen JJ, Langer D, Souza DS, Westerdahl E. Postoperative inspiratory muscle training in addition to breathing exercises and early mobilization improves oxygenation in high-risk patients after lung cancer surgery: a randomized controlled trial. Eur J Cardiothorac Surg. 2016 May;49(5):1483-91. doi: 10.1093/ejcts/ezv359. Epub 2015 Oct 20. — View Citation
Dowman L, McDonald CF, Hill CJ, Lee A, Barker K, Boote C, Glaspole I, Goh N, Southcott A, Burge A, Ndongo R, Martin A, Holland AE. Reliability of the hand held dynamometer in measuring muscle strength in people with interstitial lung disease. Physiotherapy. 2016 Sep;102(3):249-55. doi: 10.1016/j.physio.2015.10.002. Epub 2015 Oct 22. — View Citation
Evans JA, Whitelaw WA. The assessment of maximal respiratory mouth pressures in adults. Respir Care. 2009 Oct;54(10):1348-59. — View Citation
Hanada M, Kasawara KT, Mathur S, Rozenberg D, Kozu R, Hassan SA, Reid WD. Aerobic and breathing exercises improve dyspnea, exercise capacity and quality of life in idiopathic pulmonary fibrosis patients: systematic review and meta-analysis. J Thorac Dis. 2020 Mar;12(3):1041-1055. doi: 10.21037/jtd.2019.12.27. — View Citation
Hoffman M, Augusto VM, Eduardo DS, Silveira BMF, Lemos MD, Parreira VF. Inspiratory muscle training reduces dyspnea during activities of daily living and improves inspiratory muscle function and quality of life in patients with advanced lung disease. Physiother Theory Pract. 2021 Aug;37(8):895-905. doi: 10.1080/09593985.2019.1656314. Epub 2019 Aug 20. — View Citation
Singer JP, Chen J, Blanc PD, Leard LE, Kukreja J, Chen H. A thematic analysis of quality of life in lung transplant: the existing evidence and implications for future directions. Am J Transplant. 2013 Apr;13(4):839-850. doi: 10.1111/ajt.12174. Epub 2013 Feb 22. — View Citation
Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, Hill K, Holland AE, Lareau SC, Man WD, Pitta F, Sewell L, Raskin J, Bourbeau J, Crouch R, Franssen FM, Casaburi R, Vercoulen JH, Vogiatzis I, Gosselink R, Clini EM, Effing TW, Maltais F, van der Palen J, Troosters T, Janssen DJ, Collins E, Garcia-Aymerich J, Brooks D, Fahy BF, Puhan MA, Hoogendoorn M, Garrod R, Schols AM, Carlin B, Benzo R, Meek P, Morgan M, Rutten-van Molken MP, Ries AL, Make B, Goldstein RS, Dowson CA, Brozek JL, Donner CF, Wouters EF; ATS/ERS Task Force on Pulmonary Rehabilitation. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013 Oct 15;188(8):e13-64. doi: 10.1164/rccm.201309-1634ST. Erratum In: Am J Respir Crit Care Med. 2014 Jun 15;189(12):1570. — View Citation
Talwar A, Sahni S, John S, Verma S, Cardenas-Garcia J, Kohn N. Effects of pulmonary rehabilitation on Fatigue Severity Scale in patients with lung disease. Pneumonol Alergol Pol. 2014;82(6):534-40. doi: 10.5603/PiAP.2014.0070. — View Citation
* Note: There are 12 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in inspiratory muscle strength: Maximal inspiratory pressure (MIP) measured in cmH2O | Inspiratory muscle strength will be measured as maximal inspiratory pressure (MIP) using a POWERbreathe® KH2, International Ltd; UK. The MIP is defined as the greatest negative pressure sustained for at least one second by each patient. The patient will be verbally encouraged to perform three to five inspiratory maneuvers at maximal intensity. The maximum value will be used for the analysis. | The groups will be assessed: Before Lung transplantation, at baseline (immediate post-transplant), 8 weeks, 6 and 12 months after LTX | |
Primary | Change in perceived dyspnea: Modified Medical Research Council Dyspnea Scale | Modified Medical Research Council Dyspnea Scale (mMRC) will measure dyspnea perceptions during the activities of daily living. A score from 0-4 is used to classify the impact of dyspnea on physical function in patients with respiratory limitations. 0 represents a person who suffers from dyspnea only with strenuous exercise. 4 represents a person who are too breathless to leave the house, or breathless when dressing. | The groups will be assessed: Before Lung transplantation, 8 weeks, 6 and 12 months after LTX | |
Primary | Change in fatigue: Fatigue Severity Scale | Fatigue Severity Scale (FSS) evaluates fatigue using a nine-item, self-scored questionnaire, which with a visual ranking format ranging from one to seven that quantifies patient-perceived fatigue. Higher composite scores indicate more severe fatigue. An average score of less than 2.8 indicates no fatigue, and more than 6.1 indicates chronic fatigue syndrome. | The groups will be assessed: Before Lung transplantation, 8 weeks, 6 and 12 months after LTX | |
Primary | Change in functional capacity | Functional capacity will be estimated using the 6-minute walk test according to the American Thoracic Society guidelines. Before and after the test, oxygen saturation (SpO2), heart rate, Modified Dyspnea Borg Scale and walking distance will be recorded | The groups will be assessed: Before Lung transplantation, 8 weeks, 6 and 12 months after LTX | |
Secondary | Change in lung function: Pulmonary Function Test | Lung function will be measured in accordance with the guidelines of the American Thoracic Society. The following variables will be analyzed: (a) forced vital capacity (FVC, L) and (b) forced expiratory volume in the first second (FEV1, L). | The groups will be assessed: Before Lung transplantation, 8 weeks, 6 and 12 months after LTX | |
Secondary | Change in physical performance | Physical performance test will be evaluated using the Short Physical Performance Battery Test (SPPB) to assess standing balance, walking speed, and chair stands. The corresponding score from each section is determined and compiled for an overall score of 0-12. | The groups will be assessed: Before Lung transplantation, 8 weeks, 6 and 12 months after LTX | |
Secondary | Change in lower extremity muscle strength | Quadriceps strength will be measured with a hand-held dynamometer (HHD, Microfet®, Hogan Health Industries, Inc., UT, USA). At least three measurements will be obtained and the higher knee extensor muscle strength value will be used for the analysis. | The groups will be assessed: Before Lung transplantation, 8 weeks, 6 and 12 months after LTX | |
Secondary | Change in grip strength | Grip strength will be performed using a digital dynamometer. At least three measurements will be obtained and the highest reproducible value will be taken into analysis and related to reference values. | The groups will be assessed: Before Lung transplantation, 8 weeks, 6 and 12 months after LTX | |
Secondary | Change in quality of life | Heath related quality of life will be measured using the SF-36 questionnaire. The 36-Item Short Form Health Survey questionnaire (SF-36) is a very popular instrument for evaluating Health-Related Quality of Life. The SF-36 measures eight scales: physical functioning (PF), role physical (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), role emotional (RE), and mental health (MH). | The groups will be assessed: Before Lung transplantation, 8 weeks, 6 and 12 months after LTX |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04458480 -
Effect of Fast Inpatient Rehabilitation After TKA
|
||
Recruiting |
NCT06238596 -
Rehabilitation Intervention to Prevent Adverse Events Related to Androgen-deprivation Therapy (ADT) in Patients With Metastatic Prostate Cancer (PCa): a Single Arm Feasibility Study (ReCaP Study)
|
N/A | |
Recruiting |
NCT05547152 -
Evaluation of the Effectiveness of Virtual Reality Self-rehabilitation in the Treatment of Facial Paralysis and Synkinesis
|
N/A | |
Active, not recruiting |
NCT05520528 -
Impact of Group Participation on Adults With Aphasia
|
N/A | |
Completed |
NCT03661944 -
Functional Performance Assessments in Overhead Athletes With Shoulder Injury
|
||
Completed |
NCT05875480 -
The Effectiveness of Telerehabilitation After Arthroscopic Meniscus Repair
|
N/A | |
Not yet recruiting |
NCT05854056 -
Tibial Tubercle Distalisation and Accelerated Rehabilitation
|
N/A | |
Not yet recruiting |
NCT05177380 -
Efficacy of a Personalized Rehabilitation Program of Facial Involvement in Systemic Sclerosis
|
N/A | |
Not yet recruiting |
NCT04419753 -
The Role of Attention Focus Walking Training in Older Adults.
|
N/A | |
Not yet recruiting |
NCT03628495 -
Effectiveness of a Combined Pressure and Silicone Intervention for Hypertrophic Scar Treatment
|
N/A | |
Completed |
NCT02413996 -
Effects of Virtual Reality Rehabilitation in Patients With Total Knee Arthroplasty
|
N/A | |
Completed |
NCT01205542 -
Work Place Adjusted Intelligent Physical Exercise Reducing Musculoskeletal Pain in Shoulder and Neck (VIMS) - Shoulder Function
|
N/A | |
Completed |
NCT02644096 -
Rehabilitation of Patients After THR - Based on Patients´Selfrated Health
|
Phase 1 | |
Completed |
NCT03582371 -
Aqua Stand-Up Paddle Balance Effect in Parkinson's Disease (AquaSUP PARK)
|
N/A | |
Completed |
NCT05655039 -
The Effect of Pre-rehabilitation and Rehabilitation Period on Functional Status in Inpatient Stroke Patients
|
||
Completed |
NCT04502654 -
Rehabilitation for Thoracoscopic Lobectomy
|
||
Completed |
NCT06206018 -
Patient-Reported Outcome Measures in Lower Extremity Rehabilitation Program PROM_R: Impact on Health Care
|
N/A | |
Completed |
NCT03386604 -
Physical Capacity of Patients With Chronic Obstructive Pulmonary Disease With and Without Supplementation of Whey
|
N/A | |
Recruiting |
NCT05619666 -
Acute Rehabilitation in Patients With COVID-19 Pneumonia
|
N/A | |
Completed |
NCT06251791 -
Inspiratory Muscle Training and Expiratory Muscle Thickness
|
N/A |