View clinical trials related to Refractory Osteosarcoma.
Filter by:The purpose of this study, a single-center, open, single-dose clinical study, was to evaluate the safety, tolerability, and pharmacokinetic profile of IM83 CAR-T cells in the treatment of patients with relapsed or refractory osteosarcoma
This phase II trial studies the effect of atezolizumab and cabozantinib in treating adolescents and young adults with osteosarcoma that has come back (recurrent) or has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving atezolizumab and cabozantinib may help to control the osteosarcoma.
The phase I portion of this study is designed for children or adolescents and young adults (AYA) with a diagnosis of a solid tumor that has recurred (come back after treatment) or is refractory (never completely went away). The trial will test 2 combinations of therapy and participants will be randomly assigned to either Arm A or Arm B. The purpose of the phase I study is to determine the highest tolerable doses of the combinations of treatment given in each Arm. In Arm A, children and AYAs with recurrent or refractory solid tumors will receive 2 medications called Onivyde and talazoparib. Onivyde works by damaging the DNA of the cancer cell and talazoparib works by blocking the repair of the DNA once the cancer cell is damaged. By damaging the tumor DNA and blocking the repair, the cancer cells may die. In Arm B, children and AYAs with recurrent or refractory solid tumors will receive 2 medications called Onivyde and temozolomide. Both of these medications work by damaging the DNA of the cancer call which may cause the tumor(s) to die. Once the highest doses are reached in Arm A and Arm B, then "expansion Arms" will open. An expansion arm treats more children and AYAs with recurrent or refractory solid tumors at the highest doses achieved in the phase I study. The goal of the expansion arms is to see if the tumors go away in children and AYAs with recurrent or refractory solid tumors. There will be 3 "expansion Arms". In Arm A1, children and AYAs with recurrent or refractory solid tumors (excluding Ewing sarcoma) will receive Onivyde and talazoparib. In Arm A2, children and AYAs with recurrent or refractory solid tumors, whose tumors have a problem with repairing DNA (identified by their doctor), will receive Onivyde and talazoparib. In Arm B1, children and AYAs with recurrent or refractory solid tumors (excluding Ewing sarcoma) will receive Onivyde and temozolomide. Once the highest doses of medications used in Arm A and Arm B are determined, then a phase II study will open for children or young adults with Ewing sarcoma that has recurred or is refractory following treatment received after the initial diagnosis. The trial will test the same 2 combinations of therapy in Arm A and Arm B. In the phase II, a participant with Ewing sarcoma will be randomly assigned to receive the treatment given on either Arm A or Arm B.
This phase I/II trial evaluates the best dose, side effects and possible benefit of CBL0137 in treating patients with solid tumors, including central nervous system (CNS) tumors or lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Drugs, such as CBL0137, block signals passed from one molecule to another inside a cell. Blocking these signals can affect many functions of the cell, including cell division and cell death, and may kill cancer cells.
This phase I/II trial evaluates the highest safe dose, side effects, and possible benefits of tegavivint in treating patients with solid tumors that has come back (recurrent) or does not respond to treatment (refractory). Tegavivint interferes with the binding of beta-catenin to TBL1, which may help stop the growth of tumor cells by blocking the signals passed from one molecule to another inside a cell that tell a cell to grow.
This phase II trial investigates how well oleclumab and durvalumab work in treating patients with sarcoma that has come back (recurrent) or does not respond to treatment (refractory) or has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as oleclumab and durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This research study is a clinical trial of a new combination of drugs as a possible treatment for relapsed/refractory Ewing sarcoma and/or osteosarcoma. - The names of the drugs are: - Cabozantinib - Topotecan - Cyclophosphamide - The names of the non-investigational supportive care drugs are: - Filgrastim, pegfilgrastim, or a related growth factor.
This phase I trial investigates the side effects and determines the best dose of an immune cell therapy called GD2CART, as well as how well it works in treating patients with osteosarcoma or neuroblastoma that has come back (relapsed) or does not respond to treatment (refractory). T cells are infection fighting blood cells that can kill tumor cells. The T cells given in this trial will come from the patient and will have a new gene put in them that makes them able to recognize GD2, a protein on the surface of tumor cells. These GD2-specific T cells may help the body's immune system identify and kill GD2 positive tumor cells.
This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.
This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.