View clinical trials related to Refractory Neuroblastoma.
Filter by:The phase I portion of this study is designed for children or adolescents and young adults (AYA) with a diagnosis of a solid tumor that has recurred (come back after treatment) or is refractory (never completely went away). The trial will test 2 combinations of therapy and participants will be randomly assigned to either Arm A or Arm B. The purpose of the phase I study is to determine the highest tolerable doses of the combinations of treatment given in each Arm. In Arm A, children and AYAs with recurrent or refractory solid tumors will receive 2 medications called Onivyde and talazoparib. Onivyde works by damaging the DNA of the cancer cell and talazoparib works by blocking the repair of the DNA once the cancer cell is damaged. By damaging the tumor DNA and blocking the repair, the cancer cells may die. In Arm B, children and AYAs with recurrent or refractory solid tumors will receive 2 medications called Onivyde and temozolomide. Both of these medications work by damaging the DNA of the cancer call which may cause the tumor(s) to die. Once the highest doses are reached in Arm A and Arm B, then "expansion Arms" will open. An expansion arm treats more children and AYAs with recurrent or refractory solid tumors at the highest doses achieved in the phase I study. The goal of the expansion arms is to see if the tumors go away in children and AYAs with recurrent or refractory solid tumors. There will be 3 "expansion Arms". In Arm A1, children and AYAs with recurrent or refractory solid tumors (excluding Ewing sarcoma) will receive Onivyde and talazoparib. In Arm A2, children and AYAs with recurrent or refractory solid tumors, whose tumors have a problem with repairing DNA (identified by their doctor), will receive Onivyde and talazoparib. In Arm B1, children and AYAs with recurrent or refractory solid tumors (excluding Ewing sarcoma) will receive Onivyde and temozolomide. Once the highest doses of medications used in Arm A and Arm B are determined, then a phase II study will open for children or young adults with Ewing sarcoma that has recurred or is refractory following treatment received after the initial diagnosis. The trial will test the same 2 combinations of therapy in Arm A and Arm B. In the phase II, a participant with Ewing sarcoma will be randomly assigned to receive the treatment given on either Arm A or Arm B.
This phase I trial is to find out the best dose, possible benefits and/or side effects of magrolimab in combination with dinutuximab in treating patients with neuroblastoma that has come back (relapsed) or does not respond to treatment (refractory) or relapsed osteosarcoma. Magrolimab and dinutuximab are monoclonal antibodies that may interfere with the ability of tumor cells to grow and spread. The combination of magrolimab and dinutuximab may shrink or stabilize relapsed or refractory neuroblastoma or relapsed osteosarcoma. In addition, this trial may help researchers find out if it is safe to give magrolimab and dinutuximab after surgery to remove tumors from the lungs.
This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.
This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.
This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.
This phase II trial studies how well irinotecan hydrochloride, temozolomide, and dinutuximab work with or without eflornithine in treating patients with neuroblastoma that has come back (relapsed) or that isn't responding to treatment (refractory). Drugs used in chemotherapy, such as irinotecan hydrochloride and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as dinutuximab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Eflornithine blocks the production of chemicals called polyamines that are important in the growth of cancer cells. Giving eflornithine with irinotecan hydrochloride, temozolomide, and dinutuximab, may work better in treating patients with relapsed or refractory neuroblastoma.
This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.
This study is for patients with neuroblastoma, sarcoma, uveal melanoma, breast cancer, or another cancer that expresses a substance on the cancer cells called GD2. The cancer has either come back after treatment or did not respond to treatment. Because there is no standard treatment at this time, patients are asked to volunteer in a gene transfer research study using special immune cells called T cells. T cells are a type of white blood cell that helps the body fight infection. The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Both antibodies and T cells have been used to treat patients with cancers. They have shown promise but have not been strong enough to cure most patients. We have found from previous research that we can put a new gene into T cells that will make them recognize cancer cells and kill them. In our last clinical trial we made a gene called a chimeric antigen receptor (CAR) from an antibody that recognizes GD2, a substance found on almost all neuroblastoma cells (GD2-CAR). We put this gene into the patients' own T cells and gave them back to 11 neuroblastoma patients. We saw that the cells did grow for a while, but started to disappear from the blood after 2 weeks. We think that if T cells are able to last longer they may have a better chance of killing GD2 positive tumor cells. Therefore, in this study we will add a new gene to the GD2 T cells that can cause the cells to live longer. T cells need substances called cytokines to survive and the cells may not get enough cytokines after infusion. We have added the gene C7R that gives the cells a constant supply of cytokine and helps them to survive for a longer period of time. In other studies using T cells, investigators found that giving chemotherapy before the T cell infusion can improve the amount of time the T cells stay in the body and therefore the effect the T cells can have. This is called lymphodepletion and we think that it will allow the T cells to expand and stay longer in the body, and potentially kill cancer cells more effectively. The GD2-C7R T cells are an investigational product not approved by the Food and Drug Administration. The purpose of this study is to find the largest safe dose of GD2-C7R T cells, and also to evaluate how long they can be detected in the blood and what affect they have on cancer.
This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the proteins needed for cell growth.
This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.