Clinical Trials Logo

Refractory Mantle Cell Lymphoma clinical trials

View clinical trials related to Refractory Mantle Cell Lymphoma.

Filter by:
  • Active, not recruiting  
  • Page 1 ·  Next »

NCT ID: NCT04703686 Active, not recruiting - Clinical trials for Refractory Mantle Cell Lymphoma

Treatment by a Bispecific CD3xCD20 Antibody for Relapse/Refractory Lymphomas After CAR T-cells Therapy

Start date: March 30, 2021
Phase: Phase 2
Study type: Interventional

This study is a multicenter phase II trial including 2 cohorts of patients in Refractory/Relapse disease at least 1 month after CAR T-cells therapy: - cohort 1: DLBCL patients - cohort 2: PMBL, mantle cell lymphoma, transformed indolent NHL (t-iNHL) or iNHL CAR T-cells Refractory/Relapse status will be determined by PET-CT central review allowing inclusion in this trial. Patients enrolled will then receive a pre-phase of obinutuzumab followed by experimental treatment:11 cycle of glofitamab. The primary objective of the study is to assess the anti-lymphoma activity of glofitamab, a bispecific CD3xCD20 monoclonal antibody in patients with relapse/refractory DLBCL (cohort 1) disease after anti-CD19 CAR T-cells therapy

NCT ID: NCT04659044 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Polatuzumab Vedotin, Venetoclax, and Rituximab and Hyaluronidase Human for the Treatment of Relapsed or Refractory Mantle Cell Lymphoma

Start date: April 1, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies the effect of polatuzumab vedotin, venetoclax, and rituximab and hyaluronidase human in treating patients with mantle cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Polatuzumab vedotin is a monoclonal antibody, polatuzumab, linked to a toxic agent called vedotin. Polatuzumab attaches to CD79B positive cancer cells in a targeted way and delivers vedotin to kill them. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cell growth. Rituximab hyaluronidase is a combination of rituximab and hyaluronidase. Rituximab binds to a molecule called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Hyaluronidase allows rituximab to be given by injection under the skin. Giving rituximab and hyaluronidase by injection under the skin is faster than giving rituximab alone by infusion into the blood. Giving polatuzumab vedotin, venetoclax, and rituximab and hyaluronidase human may work better than standard therapy in treating patients with mantle cell lymphoma.

NCT ID: NCT04578600 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

CC-486, Lenalidomide, and Obinutuzumab for the Treatment of Recurrent or Refractory CD20 Positive B-cell Lymphoma

Start date: October 23, 2020
Phase: Phase 1
Study type: Interventional

This phase I/Ib trial investigates the side effects of CC-486 and how well it works in combination with lenalidomide and obinutuzumab in treating patients with CD20 positive B-cell lymphoma that has come back (recurrent) or has not responded to treatment (refractory). Chemotherapy drugs, such as CC-486, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Lenalidomide is a drug that alters the immune system and may also interfere with the development of tiny blood vessels that help support tumor growth. Therefore, in theory, it may reduce or prevent the growth of cancer cells. Obinutuzumab is a type of antibody therapy that targets and attaches to the CD20 proteins found on follicular lymphoma cells as well as some healthy blood cells. Once attached to the CD20 protein the obinutuzumab is thought to work in different ways, including by helping the immune system destroy the cancer cells and by destroying the cancer cells directly. Giving CC-486 with lenalidomide and obinutuzumab may improve response rates, quality, and duration, and minimize adverse events in patients with B-cell lymphoma.

NCT ID: NCT04205409 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Nivolumab for Relapsed, Refractory, or Detectable Disease Post Chimeric Antigen Receptor T-cell Treatment in Patients With Hematologic Malignancies

Start date: June 5, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well nivolumab works for the treatment of hematological malignancies that have come back (relapsed), does not respond (refractory), or is detectable after CAR T cell therapy. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT04047797 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Ixazomib and Rituximab in Treating Patients With Relapsed or Refractory Mantle Cell Lymphoma

Start date: August 28, 2019
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well ixazomib and rituximab work in treating patients with mantle cell lymphoma that has come back (relapsed) or does not respond (refractory) to BTK inhibitor treatment. Ixazomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with rituximab may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving ixazomib and rituximab may work better in treating patients with mantle cell lymphoma compared to rituximab alone.

NCT ID: NCT03946878 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Venetoclax and Acalabrutinib in Treating Patients With Relapsed or Refractory Mantle Cell Lymphoma

Start date: August 13, 2019
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well venetoclax and acalabrutinib work in treating patients with mantle cell lymphoma that did not respond to previous treatment or has come back. Venetoclax may cause cancer cell death by blocking the mechanism that cancer cells use to stay alive. Acalabrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving venetoclax and acalabrutinib together may kill more cancer cells in patients with mantle cell lymphoma.

NCT ID: NCT03479268 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Pevonedistat and Ibrutinib in Treating Participants With Relapsed or Refractory CLL or Non-Hodgkin Lymphoma

Start date: March 22, 2018
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of pevonedistat when given together with ibrutinib in participants with chronic lymphocytic leukemia or non-Hodgkin lymphoma that has come back or has stopped responding to other treatments. Pevonedistat and ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03440567 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Avelumab, Utomilumab, Rituximab, Ibrutinib, and Combination Chemotherapy in Treating Patients With Relapsed or Refractory Diffuse Large B-Cell Lymphoma or Mantle Cell Lymphoma

Start date: April 2, 2018
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of avelumab, utomilumab, rituximab, ibrutinib, and combination chemotherapy in treating patients with diffuse large B-cell lymphoma or mantle cell lymphoma that has come back or does not respond to treatment. Monoclonal antibodies, such as avelumab, utomilumab, and rituximab, may interfere with the ability of tumor cells to grow and spread. Ibrutinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as etoposide phosphate, carboplatin, and ifosfamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving avelumab, utomilumab, rituximab, ibrutinib, and combination chemotherapy may work better in treating patients with diffuse large B-cell lymphoma or mantle cell lymphoma.

NCT ID: NCT03061188 Active, not recruiting - Clinical trials for Refractory Mantle Cell Lymphoma

Nivolumab and Veliparib in Treating Patients With Recurrent or Refractory Stage IV Solid Tumors That Cannot Be Removed by Surgery or Lymphoma With or Without Alterations in DNA Repair Genes

Start date: May 23, 2017
Phase: Phase 1
Study type: Interventional

The purpose of this research study is to determine the highest and safest dose of the experimental drug veliparib when combined with nivolumab. We will also study how safely this combination of medication can be given in advanced cancer and lymphoma and benefits of receiving this therapy. Nivolumab is currently approved in certain cancers such as melanoma, lung cancer and kidney cancer. Veliparib is not yet approved for use in the United States, and is considered experimental. Veliparib inhibits (blocks) the activity of the enzyme PARP. This blocking activity may prevent the cancer cell from repairing itself and resume growing. Nivolumab increases T cells in your immune system, which allows your immune system to attack the cancer. We think the combination of these drugs will be more effective against your cancer.

NCT ID: NCT03015896 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Nivolumab and Lenalidomide in Treating Patients With Relapsed or Refractory Non-Hodgkin or Hodgkin Lymphoma

Start date: February 14, 2017
Phase: Phase 1/Phase 2
Study type: Interventional

This I/II trial studies the side effects and best dose of lenalidomide when given together with nivolumab and to see how well they work in treating patients with non-Hodgkin or Hodgkin lymphoma that has come back and does not respond to treatment. Monoclonal antibodies, such as nivolumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab and lenalidomide may work better in treating patients with non-Hodgkin or Hodgkin lymphoma.