View clinical trials related to Refractory Hepatoblastoma.
Filter by:There are limited data regarding the biology and treatment of relapsed/refractory hepatoblastoma (rrHBL). This project provides the infrastructure for acquisition of biological specimens, imaging, and correlative clinical data to facilitate biology studies and characterization of rrHBL. This registry will collect clinical, demographic, and pathological data, specimens (as available) and imaging from patients with rrHBL, prospectively. Cases are identified through: 1. Existing clinical and/or cancer registry databases 2. Referrals from clinicians, surgeons, or pathologists 3. Families initiating contact with Registry staff directly
This phase I/II trial evaluates the highest safe dose, side effects, and possible benefits of tegavivint in treating patients with solid tumors that has come back (recurrent) or does not respond to treatment (refractory). Tegavivint interferes with the binding of beta-catenin to TBL1, which may help stop the growth of tumor cells by blocking the signals passed from one molecule to another inside a cell that tell a cell to grow.
This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.