Refractory Angina Clinical Trial
Official title:
Intramyocardial Delivery of Autologous Bone Marrow
Verified date | February 2012 |
Source | IRCCS San Raffaele |
Contact | n/a |
Is FDA regulated | No |
Health authority | Italy: National Institute of Health |
Study type | Interventional |
A randomized study to assess the safety, feasibility and effectiveness of direct intramyocardial percutaneous delivery of autologous bone marrow-derived total mononuclear cells or selected CD34+ cells in patients with refractory angina pectoris.
Status | Suspended |
Enrollment | 13 |
Est. completion date | December 2018 |
Est. primary completion date | January 2011 |
Accepts healthy volunteers | No |
Gender | Both |
Age group | 21 Years and older |
Eligibility |
Inclusion criteria: 1. Subjects >21 years old; 2. Subjects with functional class (CCS) III or IV angina; 3. Subjects with left ventricular (LV) ejection fraction ³ 30% 4. Attempted "best" tolerated medical therapy 5. Clinical signs and symptoms of myocardial ischemia with reversible ischemia on perfusion imaging; 6. Patient deemed to be a poor candidate or at high surgical risk; 7. Subject must be able to complete a minimum of 2 minutes but no more than 10 minutes exercise test (Bruce Protocol); 8. Subject (or their legal guardian) understands the nature of the procedure and provides written consent prior to the procedure; 9. Subject is willing to comply with specified follow-up evaluations; 10. Patient must develop angina and a horizontal or down-sloping ST-segment depression of ³ 1 mm during exercise, compared to pre-exercise ST segment, 80 ms from the J point or moderate angina with or without the above ST segment changes. Angiographic Inclusion Criteria: 1. Severe obstruction (lumen diameter stenosis > 70%) in a coronary or surgical conduit felt to be solely or partially responsible for angina and myocardial ischemia; 2. There must be at least one coronary or surgical conduit with < 70% diameter stenosis 3. Poor candidate for percutaneous coronary intervention of treatment zone 4. Poor candidates for surgical revascularization procedures, such as inadequate target coronary anatomy or lack of potential surgical conduits. Exclusion Criteria: 1. Pregnant women; 2. Left ventricular ejection fraction <30% as assessed by either echocardiography or left ventriculography; 3. Severe cardiac heart failure with NYHA functional class III-IV symptoms; 4. Chronic atrial fibrillation; 5. Prosthetic aortic valve; 6. Severe (grade III-IV) mitral or aortic insufficiency; 7. Wall thickness of <8 mm (defined by echocardiography) of the proposed target region of myocardium; 8. Severe co-morbidity associated with a reduction in life expectancy of <1 year, such as chronic medical illnesses 9. Braunwald class II unstable angina 10. Severe peripheral (or aortic) vascular disease which might increase the risk of vascular complications (perforation, dissection or embolization); 11. Significant aortic valve pathologic sclerosis or stenosis 12. LV thrombus (mobile or mural-based) seen on echocardiography; 13. Recent (within 4 weeks) documented myocardial infarction (Q and/or non-Q wave) defined as CK-MB >3times upper normal level; 14. Currently enrolled in another investigational device or drug trial that has not completed the required follow-up period; 15. Thrombocytopenia or history of heparin-induced thrombocytopenia or thrombocytosis 16. Leukopenia 17. Leukocytosis 18. Anemia or erythrocytosis 19. Active peptic ulcer or active gastrointestinal bleeding; 20. Chronic renal failure requiring dialysis; 21. Prior or current malignancy 22. Other conditions that can significantly affect the bone-marrow 23. Evidence of concurrent infection (WBC >12.000 mm3, temperature >38.5° C); 24. Serological of clinical evidence of HIV 25. Immunotherapy 26. Abnormal bone-marrow morphology as evident in bone-marrow smear prior to the intervention Angiographic/Ventriculographic Exclusion Criteria: 1. LV thrombus (mobile or mural-based) seen on left ventriculography; 2. Coronary lesions suitable for percutaneous coronary interventions; 3. Unprotected left main coronary artery disease |
Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Investigator), Primary Purpose: Treatment
Country | Name | City | State |
---|---|---|---|
Italy | IRCCS S. Raffaele | Milan |
Lead Sponsor | Collaborator |
---|---|
IRCCS San Raffaele |
Italy,
Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999 Aug 6;85(3):221-8. — View Citation
Assmus B, Honold J, Schächinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006 Sep — View Citation
Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, Grünwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002 Dec 10;106(24):3009-17. — View Citation
Ben-Haim SA, Osadchy D, Schuster I, Gepstein L, Hayam G, Josephson ME. Nonfluoroscopic, in vivo navigation and mapping technology. Nat Med. 1996 Dec;2(12):1393-5. — View Citation
Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, Weissman NJ, Leon MB, Epstein SE, Kornowski R. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol. 2001 May;37(6):1726-32. — View Citation
Fuchs S, Satler LF, Kornowski R, Okubagzi P, Weisz G, Baffour R, Waksman R, Weissman NJ, Cerqueira M, Leon MB, Epstein SE. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol. 2003 May 21;41(10):1721-4. — View Citation
Gepstein L, Goldin A, Lessick J, Hayam G, Shpun S, Schwartz Y, Hakim G, Shofty R, Turgeman A, Kirshenbaum D, Ben-Haim SA. Electromechanical characterization of chronic myocardial infarction in the canine coronary occlusion model. Circulation. 1998 Nov 10;98(19):2055-64. — View Citation
Hamano K, Nishida M, Hirata K, Mikamo A, Li TS, Harada M, Miura T, Matsuzaki M, Esato K. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J. 2001 Sep;65(9):845-7. — View Citation
Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996 Aug 10;348(9024):370-4. — View Citation
Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Amano K, Iba O, Imada T, Iwasaka T. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler Thromb Vasc Biol. 2002 Nov 1;22(11):1804-10. Erratum in: Arterioscler Thromb Vasc Biol. 2004 Jan;24(1):212. — View Citation
Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, Hanley A, Silver M, Kearney M, Losordo DW, Isner JM, Asahara T. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation. 2003 Jan 28;107(3):461-8. — View Citation
Kim MC, Kini A, Sharma SK. Refractory angina pectoris: mechanism and therapeutic options. J Am Coll Cardiol. 2002 Mar 20;39(6):923-34. Review. — View Citation
Kobayashi T, Hamano K, Li TS, Katoh T, Kobayashi S, Matsuzaki M, Esato K. Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. J Surg Res. 2000 Apr;89(2):189-95. — View Citation
Kornowski R, Hong MK, Gepstein L, Goldstein S, Ellahham S, Ben-Haim SA, Leon MB. Preliminary animal and clinical experiences using an electromechanical endocardial mapping procedure to distinguish infarcted from healthy myocardium. Circulation. 1998 Sep 15;98(11):1116-24. — View Citation
Kornowski R, Hong MK, Leon MB. Comparison between left ventricular electromechanical mapping and radionuclide perfusion imaging for detection of myocardial viability. Circulation. 1998 Nov 3;98(18):1837-41. — View Citation
Losordo DW, Vale PR, Isner JM. Gene therapy for myocardial angiogenesis. Am Heart J. 1999 Aug;138(2 Pt 2):S132-41. Review. — View Citation
Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG, Smith HJ, Taraldsrud E, Grøgaard HK, Bjørnerheim R, Brekke M, Müller C, Hopp E, Ragnarsson A, Brinchmann JE, Forfang K. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006 Sep 21;355(12):1199-209. — View Citation
Mannheimer C, Camici P, Chester MR, Collins A, DeJongste M, Eliasson T, Follath F, Hellemans I, Herlitz J, Lüscher T, Pasic M, Thelle D. The problem of chronic refractory angina; report from the ESC Joint Study Group on the Treatment of Refractory Angina. Eur Heart J. 2002 Mar;23(5):355-70. Review. — View Citation
Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006 Mar 14;113(10):1287-94. Epub 2006 Mar 6. — View Citation
Mukherjee D, Bhatt DL, Roe MT, Patel V, Ellis SG. Direct myocardial revascularization and angiogenesis--how many patients might be eligible? Am J Cardiol. 1999 Sep 1;84(5):598-600, A8. — View Citation
Nabel EG, Plautz G, Nabel GJ. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science. 1990 Sep 14;249(4974):1285-8. — View Citation
Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature. 2001 Apr 5;410(6829):701-5. — View Citation
Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belém L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003 May 13;107(18):2294-302. Epub 2003 Apr 21. — View Citation
Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW, Hachamovitch R, Szulc M, Kligfield PD, Okin PM, Hahn RT, Devereux RB, Post MR, Hackett NR, Foster T, Grasso TM, Lesser ML, Isom OW, Crystal RG. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation. 1999 Aug 3;100(5):468-74. — View Citation
Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Süselbeck T, Werner N, Haase J, Neuzner J, Germing A, Mark B, Assmus B, Tonn T, Dimmeler S, Zeiher AM; REPAIR-AMI Investigators. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006 Dec;27(23):2775-83. Epub 2006 Nov 10. — View Citation
Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation. 1998 Feb 24;97(7):645-50. — View Citation
Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, Imaizumi T. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation. 2001 Feb 13;103(6):897-903. — View Citation
Simons M, Bonow RO, Chronos NA, Cohen DJ, Giordano FJ, Hammond HK, Laham RJ, Li W, Pike M, Sellke FW, Stegmann TJ, Udelson JE, Rosengart TK. Clinical trials in coronary angiogenesis: issues, problems, consensus: An expert panel summary. Circulation. 2000 Sep 12;102(11):E73-86. Review. — View Citation
Spertus JA, Winder JA, Dewhurst TA, Deyo RA, Prodzinski J, McDonell M, Fihn SD. Development and evaluation of the Seattle Angina Questionnaire: a new functional status measure for coronary artery disease. J Am Coll Cardiol. 1995 Feb;25(2):333-41. — View Citation
Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV, Kögler G, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002 Oct 8;106(15):1913-8. — View Citation
Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T; Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002 Aug 10;360(9331):427-35. — View Citation
Tomita S, Mickle DA, Weisel RD, Jia ZQ, Tumiati LC, Allidina Y, Liu P, Li RK. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg. 2002 Jun;123(6):1132-40. — View Citation
Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet. 2003 Jan 4;361(9351):47-9. — View Citation
Vale PR, Losordo DW, Milliken CE, McDonald MC, Gravelin LM, Curry CM, Esakof DD, Maysky M, Symes JF, Isner JM. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation. 2001 May 1;103(17):2138-43. — View Citation
Vale PR, Losordo DW, Tkebuchava T, Chen D, Milliken CE, Isner JM. Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping. J Am Coll Cardiol. 1999 Jul;34(1):246-54. — View Citation
* Note: There are 35 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Incidence of major adverse cardiac events (MACE), defined as a combined endpoint of death, acute MI (Q-wave and non-Q wave), revascularization procedures and peri-procedural complications. | 1, 6, 12 months | Yes | |
Secondary | Change in Canadian Cardiovascular Society (CCS) angina classification score | 12 months | No | |
Secondary | Changes in the quality of life, as assessed according to the Seattle Angina Questionnaire | 1,3,6,12 months and every year for 8 years | No | |
Secondary | Change in exercise duration and exercise tolerance using standardized treadmill exercise testing | 6,12 months | No | |
Secondary | Cumulative number of hospitalizations for coronary ischemia and congestive heart failure | 12 months | Yes | |
Secondary | SPECT-chances in global and regional radionuclide perfusion at rest, peak stress, and redistribution | 1, 6, 12 months | No | |
Secondary | Change in angiographic collateral score | 6 months | No | |
Secondary | Change in global and regional myocardial contractility (assessed by echocardiography) | 6, 12 months | No |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT01205893 -
Coronary Sinus Reducer for Treatment of Refractory Angina - COSIRA
|
Phase 2 | |
Suspended |
NCT04306237 -
A Study to Evaluate the Safety, Tolerability, and Efficacy of IMB-1018972 in Patients With Refractory Angina
|
Phase 2 | |
Recruiting |
NCT04892537 -
Coronary Sinus Reducer Objective Impact on Symptoms, MRI Ischaemia and Microvascular Resistance
|
N/A | |
Completed |
NCT00694642 -
Safety and Efficacy of Autologous Endothelial Progenitor Cell CD 133 for Therapeutic Angiogenesis
|
Phase 1/Phase 2 | |
Recruiting |
NCT04368819 -
Allopurinol in Patients With Refractory Angina to Improve Ischemic Symptoms
|
Phase 2/Phase 3 | |
Recruiting |
NCT05711849 -
Assessing the Safety and Effectiveness of Intracoronary Stem Cells in Patients With Refractory Angina
|
Phase 2 | |
Recruiting |
NCT03455725 -
CardiAMP Cell Therapy Chronic Myocardial Ischemia Trial
|
N/A | |
Completed |
NCT01966042 -
Study Protocol of Intramyocardial Injection of Autologous Bone Marrow Stem Cells for Refractory Angina
|
Phase 2 | |
Recruiting |
NCT03991871 -
HARapan kiTa ECP (External Counter Pulsation) Study HARTEC Study
|
N/A | |
Recruiting |
NCT05102019 -
Efficacy of the COronary SInus Reducer in Patients With Refractory Angina II
|
N/A | |
Completed |
NCT03218891 -
Cardiac Rehabilitation in Patients With Refractory Angina
|
N/A | |
Completed |
NCT01796912 -
Lipoprotein Apheresis in Refractory Angina Study
|
N/A | |
Completed |
NCT03350737 -
Coronary Arteriogenetic Heparinized Exercise
|
N/A | |
Recruiting |
NCT01566175 -
Use of the Neovasc Coronary Sinus Reducer System for the Treatment of Refractory Angina Pectoris in Patients With Ngina Class 3-4 Who Are Not Candidates for Revascularization
|
N/A | |
Recruiting |
NCT05492110 -
Coronary Sinus Reducer Implantation in Patients With Ischaemia and Non-obstructed Coronary Arteries and Coronary Microvascular Dysfunction.
|
N/A | |
Recruiting |
NCT04606459 -
COSIMA: COronary SInus Reducer for the Treatment of Refractory Microvascular Angina
|
N/A |