Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to demonstrate that omega-3 supplement can be use as an adjunct therapy for PRK patients. The investigators believe that omega-3 supplement will reduce the size of persistent epithelial defects (PEDS) and eventually hasten the corneal reepithelialization after PRK surgery. If the outcome of this study proves to be effective, then PRK would be a more attractive option to those seeking refractive treatment.


Clinical Trial Description

Dry eye and persistent epithelial defects (PEDS) following LASIK and PRK are one of the most common conditions encountered by refractive surgeons and their patient's today.¹⁻⁴ They are associated with significant clinical morbidity in patients resulting in minor problems such as discomfort, to extreme debilitation such as visual loss. There is no accepted definition of persistent epithelial defect (PED) that includes a time period of recovery. We favor the definition given in one text "… when the epithelium fails to re-grow over a defect within the expected time course.⁵ The causes of PED are diverse, with several definite etiologies' including dry eyes, limbal stem cell deficiency, diabetes mellitus and neurotrophic problems. A variety of treatment modalities have been described for PED. The elimination of predisposing associated risk remains a key factor in the management process. Therefore, to prevent and manage this common disorder it is important to have an understanding of the pathophysiology of dry eye after LASIK and PRK. This includes and understanding of the relationship and interaction between inflammation, sensory denervation and essential fatty acid pathways. Reports of clinical efficacy of anti-inflammatory therapies for treatment of dry eye disease provide direct proof of the principle that inflammation is involved in the etiology of dry eye disease. Research has shown that the omega-3 polyunsaturated fatty acids are some of the most effective natural anti inflammatory agents available. The active ingredients in omega 3, EPA ( Eicosapentanoic acid ) which is a 20 carbon omega 3-fatty acid with 5 double-bonds , and DHA ( docosahexanoic acid )which is 22 carbon omega-3 fatty acid with 6 double bond, both found in certain fish oils enhance the conversion of COX ( cyclooxygenase) to prostaglandin E3. A natural anti inflammatory agent, prostaglandin E3 competitively inhibits the effects of the arachidonic acid conversion to prostaglandin E2, a highly inflammatory substance. Prostaglandin E3 also inhibits the synthesis of TNFα and IL-1β, both of which are inflammatory leukotrienes, also by competitive inhibition.⁶ʹ⁷ By decreasing inflammation and stimulating aqueous tear production in rabbits cAMP has been shown to stimulate aqueous tear secretion in dry eye. Furthermore, by decreasing inflammation and augmenting oil and water layers of the tear film, omega-3 supplementation with fish oil rich in EPA may improve both the lipid and aqueous component of the tear film. This may improve surgical outcomes by stabilizing the tear film, reducing epithelial defects and promoting wound healing ;


Study Design

Allocation: Randomized, Endpoint Classification: Pharmacokinetics Study, Intervention Model: Parallel Assignment, Masking: Single Blind (Subject), Primary Purpose: Supportive Care


Related Conditions & MeSH terms


NCT number NCT01059019
Study type Interventional
Source University of California, San Diego
Contact
Status Completed
Phase N/A
Start date January 2010
Completion date May 2011

See also
  Status Clinical Trial Phase
Recruiting NCT04075591 - Wavefront-guided LASIK for Monovision Treatment of Myopic Subjects With Presbyopia N/A
Completed NCT03169153 - Clinical Comparison of Silicone Hydrogel Monthly Lenses N/A
Completed NCT02517567 - DAILIES TOTAL1® - Comparative Assessment of Tear Film Evaporation N/A
Recruiting NCT02844556 - International Multicenter Study on SMILE Surgery N/A
Completed NCT02214797 - Dispensing Study to Assess Visual Performance of Prototype Contact Lenses N/A
Completed NCT02235831 - DAILIES® AquaComfort Plus® Multifocal (MF) - Comparative Assessment of Visual Performance N/A
Completed NCT01941498 - WaveLight® Refractive Myopic Study N/A
Completed NCT01917162 - Multi-Center Clinical Evaluation of Two Daily Disposable Contact Lenses (Study 2) N/A
Completed NCT01629706 - Determination of Cell Population in Solution-Induced Corneal Staining (SICS) and Symptomatic Versus Asymptomatic Lens Wearers N/A
Completed NCT01440322 - AIR OPTIX® COLORS Registration Trial N/A
Completed NCT01211535 - Subjective Comfort With Multipurpose Care Solutions in Soft Contact Lens Wearers N/A
Completed NCT01233089 - Fitting Children With Contact Lenses N/A
Completed NCT01163760 - Clinical Evaluation of Two Daily Disposable Contact Lenses N/A
Completed NCT02484586 - Dispensing Study to Assess the Visual Performance of Optimised Prototype Contact Lenses N/A
Completed NCT02252133 - DAILIES TOTAL1® Lens Centration in a Japanese Population N/A
Completed NCT01951573 - Evaluation of a New Daily Disposable Multifocal Contact Lens Design N/A
Completed NCT02103309 - Comparative Evaluation of Contact Lens Centering of DAILIES® AquaComfort Plus® Versus 1-DAY ACUVUE® MOIST® in Japan N/A
Completed NCT01941485 - WaveLight® Refractive Flap Accuracy Study N/A
Recruiting NCT01718184 - Piggyback Sulcoflex Toric IOL for Correcting Refractive Error Following Corneal Transplantation N/A
Completed NCT01997216 - Multifocal Lens Design Evaluation N/A