Clinical Trials Logo

Recurrent WHO Grade III Glioma clinical trials

View clinical trials related to Recurrent WHO Grade III Glioma.

Filter by:
  • None
  • Page 1

NCT ID: NCT05139056 Recruiting - Clinical trials for Recurrent Glioblastoma

Multiple Doses of Neural Stem Cell Virotherapy (NSC-CRAd-S-pk7) for the Treatment of Recurrent High-Grade Gliomas

Start date: May 2, 2023
Phase: Phase 1
Study type: Interventional

This phase I trial studies the effect of multiple doses of NSC-CRAd-S-pk7 in treating patients with high-grade gliomas that have come back (recurrent). NSC-CRAd-S-pk7 consists of neural stem cells that carry a virus, which can kill cancer cells. Giving multiple doses of NSC-CRAd-S-pk7 may kill more tumor cells.

NCT ID: NCT05009992 Active, not recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

Combination Therapy for the Treatment of Diffuse Midline Gliomas

Start date: October 20, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial determines if the combination of ONC201 with different drugs, panobinostat or paxalisib, is effective for treating patients with diffuse midline gliomas (DMGs). Despite years of research, little to no progress has been made to improve outcomes for patients with DMGs, and there are few treatment options. ONC201, panobinostat, and paxalisib are all enzyme inhibitors that may stop the growth of tumor cells by clocking some of the enzymes needed for cell growth. This phase II trial assesses different combinations of these drugs for the treatment of DMGs.

NCT ID: NCT04540107 Recruiting - Clinical trials for WHO Grade III Glioma

Serial MR Imaging and MR Spectroscopic Imaging for the Characterization of Lower Grade Glioma

Start date: January 11, 2017
Phase: Phase 1
Study type: Interventional

This trial studies how well serial magnetic resonance (MR) imaging and MR spectroscopic imaging work in characterizing lower grade glioma. Diagnostic procedures, such as MR imaging and MR spectroscopic imaging, may detect serial changes in lower grade glioma. This study may help researchers learn more about practical ways of evaluating and standardizing treatment in patients with brain tumors.

NCT ID: NCT04214392 Recruiting - Clinical trials for Recurrent Glioblastoma

Chimeric Antigen Receptor (CAR) T Cells With a Chlorotoxin Tumor-Targeting Domain for the Treatment of MMP2+ Recurrent or Progressive Glioblastoma

Start date: February 26, 2020
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of chimeric antigen receptor (CAR) T cells with a chlorotoxin tumor-targeting domain in treating patients with MPP2+ glioblastoma that has come back (recurrent) or that is growing, spreading, or getting worse (progressive). Vaccines made from a gene-modified virus may help the body build an effective immune response to kill tumor cells.

NCT ID: NCT04044937 Active, not recruiting - Clinical trials for Recurrent Glioblastoma

Fluoroethyltyrosine for Evaluation of Intracranial Neoplasms

UC-GlioFET
Start date: October 29, 2018
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well F-18 fluoroethyltyrosine (fluoroethyltyrosine) works in detecting tumors in participants with intracranial tumors that have come back. FET accumulates in malignant cells within intracranial neoplasms and can be used to detect recurrent disease and characterize the grade of glial neoplasms. Imaging agents such as FET can help oncologist to see the tumor better during a positron emission tomography (PET) scan.

NCT ID: NCT03914742 Completed - Clinical trials for Recurrent Glioblastoma

BGB-290 and Temozolomide in Treating Patients With Recurrent Gliomas With IDH1/2 Mutations

Start date: January 3, 2020
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and how well BGB-290 and temozolomide work in treating patients with gliomas (brain tumors) with IDH1/2 mutations that have come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating patients with recurrent gliomas.

NCT ID: NCT03749187 Recruiting - Glioblastoma Clinical Trials

BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas

PNOC017
Start date: April 3, 2019
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma that is newly diagnosed or has come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma.

NCT ID: NCT02208362 Active, not recruiting - Clinical trials for Recurrent Glioblastoma

Genetically Modified T-cells in Treating Patients With Recurrent or Refractory Malignant Glioma

Start date: May 18, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of genetically modified T-cell immunotherapy in treating patients with malignant glioma that has come back (recurrent) or has not responded to therapy (refractory). A T cell is a type of immune cell that can recognize and kill abnormal cells in the body. T cells are taken from the patient's blood and a modified gene is placed into them in the laboratory and this may help them recognize and kill glioma cells. Genetically modified T-cells may also help the body build an immune response against the tumor cells.

NCT ID: NCT02192359 Active, not recruiting - Clinical trials for Recurrent Glioblastoma

Carboxylesterase-Expressing Allogeneic Neural Stem Cells and Irinotecan Hydrochloride in Treating Patients With Recurrent High-Grade Gliomas

Start date: March 7, 2016
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of carboxylesterase-expressing allogeneic neural stem cells when given together with irinotecan hydrochloride in treating patients with high-grade gliomas that have come back. Placing genetically modified neural stem cells into brain tumor cells may make the tumor more sensitive to irinotecan hydrochloride. Irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving carboxylesterase-expressing allogeneic neural stem cells and irinotecan hydrochloride may be a better treatment for high-grade gliomas.