Clinical Trials Logo

Recurrent WHO Grade II Glioma clinical trials

View clinical trials related to Recurrent WHO Grade II Glioma.

Filter by:
  • None
  • Page 1

NCT ID: NCT05222165 Withdrawn - Clinical trials for Advanced Solid Tumor

Study With Infigratinib in Subjects With Advanced Solid and CNS Tumors or Recurrent or Progressive Low-Grade Glioma With Selected FGFR1-3 Alterations

NEWEL
Start date: October 1, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

The phase 1b study is aimed at determining the pediatric recommended phase 2 dose (RP2D) of Infigratinib. The phase 2 study will evaluate efficacy and safety of infigratinib.

NCT ID: NCT05139056 Recruiting - Clinical trials for Recurrent Glioblastoma

Multiple Doses of Neural Stem Cell Virotherapy (NSC-CRAd-S-pk7) for the Treatment of Recurrent High-Grade Gliomas

Start date: May 2, 2023
Phase: Phase 1
Study type: Interventional

This phase I trial studies the effect of multiple doses of NSC-CRAd-S-pk7 in treating patients with high-grade gliomas that have come back (recurrent). NSC-CRAd-S-pk7 consists of neural stem cells that carry a virus, which can kill cancer cells. Giving multiple doses of NSC-CRAd-S-pk7 may kill more tumor cells.

NCT ID: NCT04214392 Recruiting - Clinical trials for Recurrent Glioblastoma

Chimeric Antigen Receptor (CAR) T Cells With a Chlorotoxin Tumor-Targeting Domain for the Treatment of MMP2+ Recurrent or Progressive Glioblastoma

Start date: February 26, 2020
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of chimeric antigen receptor (CAR) T cells with a chlorotoxin tumor-targeting domain in treating patients with MPP2+ glioblastoma that has come back (recurrent) or that is growing, spreading, or getting worse (progressive). Vaccines made from a gene-modified virus may help the body build an effective immune response to kill tumor cells.

NCT ID: NCT03914742 Completed - Clinical trials for Recurrent Glioblastoma

BGB-290 and Temozolomide in Treating Patients With Recurrent Gliomas With IDH1/2 Mutations

Start date: January 3, 2020
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and how well BGB-290 and temozolomide work in treating patients with gliomas (brain tumors) with IDH1/2 mutations that have come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating patients with recurrent gliomas.

NCT ID: NCT03749187 Recruiting - Glioblastoma Clinical Trials

BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas

PNOC017
Start date: April 3, 2019
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma that is newly diagnosed or has come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma.

NCT ID: NCT02208362 Active, not recruiting - Clinical trials for Recurrent Glioblastoma

Genetically Modified T-cells in Treating Patients With Recurrent or Refractory Malignant Glioma

Start date: May 18, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of genetically modified T-cell immunotherapy in treating patients with malignant glioma that has come back (recurrent) or has not responded to therapy (refractory). A T cell is a type of immune cell that can recognize and kill abnormal cells in the body. T cells are taken from the patient's blood and a modified gene is placed into them in the laboratory and this may help them recognize and kill glioma cells. Genetically modified T-cells may also help the body build an immune response against the tumor cells.