View clinical trials related to Recurrent Prostate Carcinoma.
Filter by:This phase II trial evaluates Fluorine-18 radiohybrid prostate-specific membrane antigen (18F- rhPSMA)-7.3 positron emission tomography (PET)/computed tomography (CT) scans with and without furosemide for the reduction of bladder activity in patients with prostate cancer that has come back (recurrent) based on elevated levels of prostate-specific antigen (PSA) in the blood (biochemical) after prostate surgery (prostatectomy). Furosemide is a diuretic substance that increases the urine flow into the bladder, thereby decreasing the level of radioactivity within the bladder, which may help to see any abnormal areas that could be masked by the radioactivity within the bladder. PET is an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of tracer, in the case of this research, rhPSMA ligand. CT utilizes x-rays that traverse body from the outside. CT images provide an exact outline of organs and potential inflammatory tissue where it occurs in patient's body. Adding furosemide to 18F-rhPSMA 7.3 PET/CT scans may help to better detect and treat patients with biochemically recurrent prostate cancer.
This phase I trial investigates the side effects of cabozantinib and nivolumab in treating patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and who are undergoing treatment for human immunodeficiency virus (HIV). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib and nivolumab may shrink or stabilize cancer in patients undergoing treatment for HIV.
This exploratory study investigates how a new imaging technique called FAPI PET/CT can determine where and to which degree the FAPI tracer (68Ga-FAPi-46) accumulates in normal and cancer tissues in patients with prostate cancer. Because some cancers take up 68Ga-FAPi-46 it can be seen with PET. FAP stands for Fibroblast Activation Protein. FAP is produced by cells that surround tumors. The function of FAP is not well understood but imaging studies have shown that FAP can be detected with FAPI PET/CT. Imaging FAP with FAPI PET/CT may in the future provide additional information about various cancers including prostate cancer.
This phase II trial studies the side effects of radiation therapy (hypofractionated proton beam therapy or IMRT) for the treatment of prostate cancer that has come back (recurrent) or that has spread to a limited number of sites (oligometastatic) following primary localized treatment. Hypofractionated proton beam radiation therapy delivers smaller doses of radiation therapy over time and may kill more tumor cells and have fewer side effects. IMRT uses high energy x-rays to kill tumor cells and shrink tumors. This trial is being done to find out if a shorter course of radiation therapy is better with fewer side effects for patients with recurrent prostate cancer.
This phase II trial studies how well antiandrogen therapy (leuprolide, apalutamide, and abiraterone acetate) and stereotactic body radiation therapy (SBRT) works in treating patients with prostate cancer that has come back and has spread to other parts of the body. Drugs used in chemotherapy, such as leuprolide, apalutamide, and abiraterone acetate, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. SBRT uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Giving antiandrogen therapy and SBRT may work better in treating patients with prostate cancer.
This phase II trial studies how well surgery and radiation therapy work in treating patients with prostate cancer that has come back or spread to other parts of the body. Radiation therapy uses high energy beams to kill tumor cells and shrink tumors. Surgical procedures, such as oligometastasectomy, may remove tumor cells that have spread to other parts of the body. Surgery and radiation therapy may work better in treating patients with prostate cancer that has come back or spread to other parts of the body.
This phase III trial studies how well Gallium Ga 68-labeled PSMA-11 (68Ga-PSMA-11) positron emission tomography (PET)/computed tomography (CT) works in diagnosing participants with prostate cancer that has come back after surgery. 68Ga-PSMA-11 are taken up by cancer cells. Diagnostic procedures, such as PET/CT scans, may help find and diagnose prostate cancer and find out how far the disease has spread. Giving 68Ga-PSMA-11 with PET/CT may help doctors plan better for salvage radiation therapy in participants with recurrent prostate cancer.
This phase I trial studies the side effects and best way to give hyperthermia and high dose rate radiation therapy in treating patients with prostate cancer that has come back after prior radiation treatment. Radiation therapy, such as high dose rate brachytherapy, uses radioactive material placed directly into or near a tumor to kill tumor cells. Hyperthermia therapy may make tumor cells more sensitive to the effects of radiation therapy by heating them to several degrees above normal body temperature. Giving hyperthermia and high dose rate radiation therapy may work better in treating patients with recurrent prostate cancer after radiation.
This phase II trial studies how well trametinib works in treating patients with hormone-resistant prostate cancer that is growing or getting worse and has spread to other parts of the body. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies the side effects and how well abiraterone acetate, niclosamide, and prednisone work in treating patients with hormone-resistant prostate cancer. Androgens can cause the growth of prostate cells. Hormone therapy using abiraterone acetate may fight prostate cancer by lowering the amount of androgen the body makes. Niclosamide is a drug that may block another signal that can cause prostate cancer cell growth. Prednisone is a drug that can help lessen inflammation. Giving abiraterone acetate, niclosamide, and prednisone may be a better treatment for patients with hormone-resistant prostate cancer.