View clinical trials related to Recurrent Osteosarcoma.
Filter by:This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.
This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial studies the side effects and best dose of anti-SEMA4D monoclonal antibody VX15/2503 (VX15/2503) and to see how well it works in treating younger patients with solid tumors that have come back after treatment, or do not respond to treatment. Monoclonal antibodies, such as VX15/2503, may interfere with the ability of tumor cells to grow and spread.
This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.
This phase II trial studies how well cabozantinib-s-malate works in treating younger patients with sarcomas, Wilms tumor, or other rare tumors that have come back, do not respond to therapy, or are newly diagnosed. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth and tumor blood vessel growth.
The purpose of this study is to find out what effect an antibody called Humanized 3F8 (Hu3F8) and a drug called GM-CSF have on the patient and whether it can keep the patient in remission longer and/or prevent recurrence of the disease.
This phase II trial studies how well glembatumumab vedotin works in treating patients with osteosarcoma that has come back (recurrent) or does not respond to treatment (refractory). Monoclonal antibodies, such as glembatumumab vedotin, may find tumor cells and help kill them.
This phase II trial studies how well dinutuximab works when given with sargramostim in treating patients with osteosarcoma that has come back after treatment (recurrent). Monoclonal antibodies, such as dinutuximab, may find tumor cells and help kill them. Sargramostim may help the body increase the amount of white blood cells it produces, which help the body fight off infections. Giving dinutuximab with sargramostim may work better and kill more cancer cells.