Clinical Trials Logo

Recurrent Non-Hodgkin Lymphoma clinical trials

View clinical trials related to Recurrent Non-Hodgkin Lymphoma.

Filter by:

NCT ID: NCT05627245 Recruiting - Clinical trials for Refractory Non-Hodgkin Lymphoma

Testing the Safety of the Anti-cancer Drugs Tazemetostat and Belinostat in Patients With Lymphomas That Have Resisted Treatment

Start date: March 1, 2023
Phase: Phase 1
Study type: Interventional

This phase I trial tests the safety, side effects, and best dose of combination therapy with tazemetostat and belinostat in treating patients with lymphomas that have returned (relapsed) or resisted treatment (refractory). Tazemetostat is in a class of medications called EZH2 inhibitors. The EZH2 gene provides instructions for making a type of enzyme called histone methyltransferase which is involved in gene expression and cell division. Blocking EZH2 may help keep cancer cells from growing. Belinostat is in a class of medications called histone deacetylase inhibitors. Histone deacetylases are enzymes needed for cell division. Belinostat may kill cancer cells by blocking histone deacetylase. It may also prevent the growth of new blood vessels that tumors need to grow and may help make cancer cells easier to kill with other anticancer drugs. There is some evidence in animals and in living human cells that combination therapy with tazemetostat and belinostat can shrink or stabilize cancer, but it is not known whether this will happen in people. This trial may help doctors learn more about treatment of patients with relapsed or refractory lymphoma.

NCT ID: NCT05418088 Recruiting - Clinical trials for Refractory Chronic Lymphocytic Leukemia

Genetically Engineered Cells (Anti-CD19/CD20/CD22 CAR T-cells) for the Treatment of Relapsed or Refractory Lymphoid Malignancies

Start date: June 30, 2022
Phase: Phase 1
Study type: Interventional

This phase I trial tests the safety, side effects and best infusion dose of genetically engineered cells called anti-CD19/CD20/CD22 chimeric antigen receptor (CAR) T-cells following a short course of chemotherapy with cyclophosphamide and fludarabine in treating patients with lymphoid cancers (malignancies) that have come back (recurrent) or do not respond to treatment (refractory). Lymphoid malignancies eligible for this trial are: non-Hodgkin lymphoma (NHL), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and B-prolymphocytic leukemia (B-PLL). T-cells (a type of white blood cell) form part of the body's immune system. CAR-T is a type of cell therapy that is used with gene-based therapies. CAR T-cells are made by taking a patient's own T-cells and genetically modifying them with a virus so that they are recognized by a group of proteins called CD19/CD20/CD22 which are found on the surface of cancer cells. Anti-CD19/CD20/CD22 CAR T-cells can recognize CD19/CD20/CD22, bind to the cancer cells and kill them. Giving combination chemotherapy helps prepare the body before CAR T-cell therapy. Giving CAR-T after cyclophosphamide and fludarabine may kill more tumor cells.

NCT ID: NCT05077527 Not yet recruiting - HIV Infection Clinical Trials

Immune Cell Therapy (CAR-T) for the Treatment of Patients With HIV and B-Cell Non-Hodgkin Lymphoma

Start date: July 20, 2024
Phase: Phase 1
Study type: Interventional

This phase I trial evaluates the side effects and usefulness of axicabtagene clioleucel (a CAR-T therapy) and find out what effect, if any, it has on treating patients with HIV-associated aggressive B-cell non-Hodgkin lymphoma that has come back (relapsed) or not responded to treatment (refractory). T cells are infection fighting blood cells that can kill tumor cells. Axicabtagene ciloleucel consists of genetically modified T cells, modified to recognize CD-19, a protein on the surface of cancer cells. These CD-19-specific T cells may help the body's immune system identify and kill CD-19-positive B-cell non-Hodgkin lymphoma cells.

NCT ID: NCT04851119 Recruiting - Melanoma Clinical Trials

Tegavivint for the Treatment of Recurrent or Refractory Solid Tumors, Including Lymphomas and Desmoid Tumors

Start date: November 8, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial evaluates the highest safe dose, side effects, and possible benefits of tegavivint in treating patients with solid tumors that has come back (recurrent) or does not respond to treatment (refractory). Tegavivint interferes with the binding of beta-catenin to TBL1, which may help stop the growth of tumor cells by blocking the signals passed from one molecule to another inside a cell that tell a cell to grow.

NCT ID: NCT04640779 Recruiting - Clinical trials for Recurrent Plasma Cell Myeloma

Low-Dose Selinexor and Choline Salicylate for Non-Hodgkin or Hodgkin Lymphoma, Histiocytic/Dendritic Cell Neoplasm, or Relapsed or Refractory Multiple Myeloma

Start date: February 8, 2021
Phase: Phase 1
Study type: Interventional

This phase Ib trial evaluates the side effects and best dose of choline salicylate given together with a low dose of selinexor in treating patients with non-Hodgkin or Hodgkin lymphoma, or multiple myeloma whose prior treatment did not help their cancer (refractory) or for patients with histiocytic/dendritic cell neoplasm. Anti-inflammatory drugs, such as choline salicylate lower the body's immune response and are used with other drugs in the treatment of some types of cancer. Selinexor may stop the growth of cancer cells by blocking a protein called CRM1 that is needed for cell growth. This trial may help doctors learn more about selinexor and choline salicylate as a treatment for with non-Hodgkin or Hodgkin lymphoma, histiocytic/dendritic cell neoplasm, multiple myeloma.

NCT ID: NCT04320888 Active, not recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

Selpercatinib for the Treatment of Advanced Solid Tumors, Lymphomas, or Histiocytic Disorders With Activating RET Gene Alterations, a Pediatric MATCH Treatment Trial

Start date: May 3, 2021
Phase: Phase 2
Study type: Interventional

This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.

NCT ID: NCT04284774 Active, not recruiting - Clinical trials for Malignant Solid Neoplasm

Tipifarnib for the Treatment of Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With HRAS Gene Alterations, a Pediatric MATCH Treatment Trial

Start date: October 13, 2020
Phase: Phase 2
Study type: Interventional

This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.

NCT ID: NCT04205409 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Nivolumab for Relapsed, Refractory, or Detectable Disease Post Chimeric Antigen Receptor T-cell Treatment in Patients With Hematologic Malignancies

Start date: June 5, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well nivolumab works for the treatment of hematological malignancies that have come back (relapsed), does not respond (refractory), or is detectable after CAR T cell therapy. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT04195555 Active, not recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

Ivosidenib in Treating Patients With Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With IDH1 Mutations (A Pediatric MATCH Treatment Trial)

Start date: July 20, 2020
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.

NCT ID: NCT04029038 Withdrawn - Clinical trials for Refractory Chronic Lymphocytic Leukemia

Modified Immune Cells (CD19-CD22 CAR T Cells) in Treating Patients With Recurrent or Refractory CD19 Positive, CD22 Positive Leukemia or Lymphoma

Start date: May 15, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of modified immune cells called CD19-CD22 chimeric antigen receptor (CAR) T cells in treating patients with CD19 positive(+), CD22+ B-acute lymphoblastic leukemia, chronic lymphocytic leukemia, or non-Hodgkin's lymphoma that has come back (recurrent) or does not respond to treatment (refractory). T-cells are collected from the patient and genetic materials called "chimeric antigen receptors (CAR)" are transferred to the collected T-cells. The CAR T-cells are then infused back to the patient's body. Giving CD19- CD22 CAR T cells after chemotherapy may help to control the disease.