View clinical trials related to Recurrent Melanoma.
Filter by:This phase II trial studies trametinib in treating patients with melanoma with v-Raf murine sarcoma viral oncogene homolog B (BRAF) non-V600 mutations that has spread to other places in the body. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies intermittent dosing of BRAF inhibitor LGX818 (encorafenib) and MEK inhibitor MEK 162 (binimetinib) in treating patients with melanoma that has spread to other parts of the body (metastatic) and have a BRAF V600 mutation. LGX818 and MEK162 may stop the growth of tumor cells by blocking different enzymes needed for cell growth. Giving LGX818 and MEK162 with breaks between each course (intermittently) may help delay the time when tumors become resistant to the drugs.
This clinical trial studies how well FDG-PET/CT measures early response in patients with stage III-IV melanoma who are receiving chemotherapy. Positron emission tomography (PET)/computed tomography (CT) uses a metabolic imaging radiotracer, [18F]fluorodeoxyglucose (FDG), which selectively accumulates in tumors. FDG-PET/CT of advanced melanoma before, during, and after treatment may improve methods for predicting which patients may benefit from therapy.
This phase III trial studies how well initial treatment with ipilimumab and nivolumab followed by dabrafenib and trametinib works and compares it to initial treatment with dabrafenib and trametinib followed by ipilimumab and nivolumab in treating patients with stage III-IV melanoma that contains a mutation known as BRAFV600 and cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Dabrafenib and trametinib may block tumor growth by targeting the BRAFV600 gene. It is not yet known whether treating patients with ipilimumab and nivolumab followed by dabrafenib and trametinib is more effective than treatment with dabrafenib and trametinib followed by ipilimumab and nivolumab.
This phase II trial studies how well high-dose aldesleukin and ipilimumab works in treating patients with stage III-IV melanoma that cannot be removed by surgery. Biological therapies, such as aldesleukin, may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as ipilimumab, interfere with the ability of tumor cells to grow and spread. Giving high-dose aldesleukin together with ipilimumab may work better in treating patients with melanoma.
This phase I trial studies the side effects and best dose of small interfering ribonucleic acid (siRNA)-transfected peripheral blood mononuclear cells APN401 (APN401) in treating patients with melanoma, kidney, or pancreatic cancer, or other solid tumors that have spread to other parts of the body or that cannot be removed by surgery. There are factors in immune cells in the blood that inhibit their ability to kill cancers. Treating white blood cells with one of these factors in the laboratory may help the white blood cells kill more cancer cells when they are put back in the body.
This phase I trial studies the best dose of vemurafenib when combined with whole brain radiation therapy (WBRT) or stereotactic radiosurgery (SRS) in patients with v-raf murine sarcoma viral oncogene homolog B (BRAF) mutation-positive melanoma and brain metastases. Radiation therapy is an effective treatment for patients with brain metastases. Patients with multiple metastases are typically treated with WBRT. For patients with a few metastases, SRS alone can be used. Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Combining radiation treatment with vemurafenib for melanoma patients with brain metastases may result in improved local control and prolonged survival.
This phase I clinical trial studies the side effects of selinexor in treating patients with melanoma that cannot be removed by surgery. Drugs used in chemotherapy, such as selinexor, may stop the growth of tumor cells, by stopping them from dividing.
This phase II trial studies the effectiveness of the combination of stereotactic radiation therapy and ipilimumab in patients with metastatic melanoma that has spread to four or fewer sites in the body (oligometastatic). Stereotactic radiation therapy is a type of external beam radiation therapy that uses special equipment to position the patient and precisely give a either a single large dose of radiation therapy to a tumor or several large doses of radiation therapy to a tumor using precision and accuracy that is guided by onboard daily imaging prior to radiation therapy. Monoclonal antibodies, such as ipilimumab, can block tumor growth in different ways. Some monoclonal antibodies find tumor cells and help kill them or carry tumor-killing substances to them. Giving stereotactic radiosurgery together with ipilimumab may kill more tumor cells by causing addition melanoma antigens to be presented to the immune system.
This phase II trial studies how well molecularly targeted therapy works in treating patients with melanoma that has spread to other parts of the body. Patients must have received or do not qualify for prior immunotherapy. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific types of cancer cells with less harm to normal cells. Molecularly targeted therapy works by treating patients with substances that kill cancer cells by targeting key molecules involved in cancer cell growth.