View clinical trials related to Recurrent Marginal Zone Lymphoma.
Filter by:This phase I trial is studying the side effects and best dose of methoxyamine when given together with fludarabine phosphate in treating patients with relapsed or refractory hematologic malignancies. Drugs used in chemotherapy, such as methoxyamine and fludarabine phosphate, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving methoxyamine together with fludarabine phosphate may kill more cancer cells.
This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).
This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This pilot clinical trial studies mechanical stimulation in preventing bone density loss in patients undergoing donor stem cell transplant. Mechanical stimulation may limit, prevent, or reverse bone loss, increase muscle and cardiac performance, and improve overall health
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
This phase 1 trial studies the side effects and the best dose of donor CD8+ memory T-cells in treating patients with hematolymphoid malignancies. Giving low dose of chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-cancer effects). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect
This phase I trial studies the side effects and best dose of BTK inhibitor PCI-32765 when given together with rituximab and bendamustine hydrochloride in treating patients with recurrent non-Hodgkin lymphoma (NHL). BTK inhibitor PCI-32765 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving BTK inhibitor PCI-32765 together with rituximab and bendamustine hydrochloride may kill more cancer cells.
This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.
This phase II trial studies how well giving lenalidomide with or without rituximab works in treating patients with progressive or relapsed chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), prolymphocytic leukemia (PLL), or non-Hodgkin lymphoma (NHL). Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with or without rituximab may kill more cancer cells.
This clinical trial studies etoposide, filgrastim and plerixafor in improving stem cell mobilization in patients with non-Hodgkin lymphoma. Giving colony-stimulating factors, such as filgrastim, and plerixafor and etoposide together helps stem cells move from the patient's bone marrow to the blood so they can be collected and stored.