View clinical trials related to Recurrent Marginal Zone Lymphoma.
Filter by:Phase II trial to study the effectiveness of combining bryostatin 1 with vincristine in treating patients who have progressive or relapsed non-Hodgkin's lymphoma after autologous bone marrow transplantation or autologous stem cell transplantation. Drugs used in chemotherapy such as vincristine use different ways to stop cancer cells from dividing so they stop growing or die. Bryostatin 1 may help vincristine kill more cancer cells by making the cells more sensitive to the drug
This phase I trial studies the side effects, best way to give, and the best dose of alvocidib when given together with fludarabine phosphate and rituximab in treating patients with previously untreated or relapsed lymphoproliferative disorders or mantle cell lymphoma. Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy such as alvocidib and fludarabine use different ways to stop cancer cells from dividing so they stop growing or die. Combining monoclonal antibody therapy with chemotherapy may kill more cancer cells.
The goal of this clinical research study is to learn if the combination of oblimersen sodium and rituximab can help to shrink or slow the growth of the tumor in patients with B-cell non-Hodgkin's lymphoma who have not responded to earlier treatment. Oblimersen Sodium is an investigational drug. The safety of this combination treatment will also be studied
Phase I trial to study the effectiveness of bortezomib in treating patients who have advanced cancer and kidney dysfunction. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for cancer cell growth.
This phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening
This phase II trial studies the side effects and the best dose of alemtuzumab when given together with fludarabine phosphate and low-dose total body irradiation (TBI) and how well it works before donor stem cell transplant in treating patients with hematological malignancies. Giving chemotherapy and low-dose TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. Also, monoclonal antibodies, such as alemtuzumab, can find cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after transplant may stop this from happening.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of imatinib mesylate in treating patients who have advanced cancer and liver dysfunction
Phase I trial to study the effectiveness of geldanamycin analogue in treating patients who have advanced solid tumors or non-Hodgkin's lymphoma. Drugs used in chemotherapy work in different ways to stop tumor cells from dividing so they stop growing or die.
Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of monoclonal antibody therapy in treating patients who have chronic lymphocytic leukemia, lymphocytic lymphoma, acute lymphoblastic leukemia, or acute myeloid leukemia.
This phase I trial is studying how well monoclonal antibody therapy with peripheral stem cell transplant works in treating patients with non-Hodgkin's lymphoma. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Peripheral stem cell transplant may allow the doctor to give higher doses of monoclonal antibodies and kill more cancer cells