View clinical trials related to Recurrent Hodgkin Lymphoma.
Filter by:This phase II trial studies how well ibrutinib and brentuximab vedotin work in treating patients with Hodgkin lymphoma that has returned (relapsed) or does not respond to treatment (refractory). Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as brentuximab vedotin, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving ibrutinib together with brentuximab vedotin may be a better treatment for Hodgkin lymphoma.
This phase II clinical trial studies how well personalized natural killer (NK) cell therapy works after chemotherapy and umbilical cord blood transplant in treating patients with myelodysplastic syndrome, leukemia, lymphoma or multiple myeloma. This clinical trial will test cord blood (CB) selection for human leukocyte antigen (HLA)-C1/x recipients based on HLA-killer-cell immunoglobulin-like receptor (KIR) typing, and adoptive therapy with CB-derived NK cells for HLA-C2/C2 patients. Natural killer cells may kill tumor cells that remain in the body after chemotherapy treatment and lessen the risk of graft versus host disease after cord blood transplant.
Determine the relapse-free, donor lymphocyte infusion (DLI)-free survival in patients receiving the investigational regimen.This is a randomized phase II clinical trial, comparing two different dosing schedules of mycophenolate mofetil for graft versus host disease (GVHD) prevention following allogeneic stem cell transplantation. Risk for relapse, GVHD and non-relapse mortality will be assessed. Adaptive randomization between two study arms will be performed based on T cell counts at day 60.
This clinical trial studies gene-modified, human immunodeficiency virus (HIV)-protected stem cell transplant in treating patients with HIV-associated lymphoma. Stem cells, or cells which help form blood, are collected from the patient and stored. They are treated in the laboratory to help protect the immune system from HIV. Chemotherapy is given before transplant to kill lymphoma cells and to make room for new stem cells to grow. Patients then receive the stem cells that were collected from them before chemotherapy and have been genetically modified to replace the stem cells killed by the chemotherapy.
This phase I/II trial studies the side effects and best dose of nivolumab when given with or without ipilimumab to see how well they work in treating younger patients with solid tumors or sarcomas that have come back (recurrent) or do not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether nivolumab works better alone or with ipilimumab in treating patients with recurrent or refractory solid tumors or sarcomas.
This phase I trial studies the side effects and the best dose of everolimus when given together with brentuximab vedotin in treating patients with Hodgkin lymphoma that has come back (relapsed) or is not responding to treatment (refractory). Everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Brentuximab vedotin may interfere with the ability of cancer cells to grow and spread by binding to a protein on the surface of cancer cells and then releasing a cancer-killing substance to them. Giving everolimus together with brentuximab vedotin may be a better treatment for Hodgkin lymphoma.
This phase I/II trial studies the side effects and best dose of brentuximab vedotin that can be combined with ifosfamide, carboplatin, and etoposide in treating patients with Hodgkin lymphoma that has come back (relapsed) or is not responding to treatment (refractory). Monoclonal antibody-drug conjugates, such as brentuximab vedotin, can block cancer growth in different ways by targeting certain cells. Chemotherapy drugs, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving brentuximab vedotin together with an ifosfamide, carboplatin, and etoposide chemotherapy regimen may kill more cancer cells.
This phase I/II trial studies the side effects and the best dose of radiolabeled monoclonal antibody when given together with combination chemotherapy before stem cell transplant and to see how well it works in treating patients with high-risk lymphoid malignancies. Radiolabeled monoclonal antibodies, such as yttrium Y 90 anti-CD45 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. Giving chemotherapy before a stem transplant stops the growth of cancer cells by stopping them from dividing or killing them. Stem cells collected from the patient's blood are then returned to the patient to replace the blood-forming cells that were destroyed by the radiolabeled monoclonal antibody and chemotherapy.
This phase I trial studies the side effects and best dose of alisertib and romidepsin in treating patients with B-cell or T-cell lymphomas that have returned after a period of improvement (relapsed) or have not responded to treatment (refractory). Alisertib and romidepsin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I/Ib trial studies the side effects and best dose of ipilimumab or nivolumab in treating patients with cancers of the blood and blood-forming tissues (hematologic cancers) that have returned after a period of improvement (relapsed) after donor stem cell transplant. Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.