Clinical Trials Logo

Recurrent Follicular Lymphoma clinical trials

View clinical trials related to Recurrent Follicular Lymphoma.

Filter by:

NCT ID: NCT06343376 Recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Genetically Engineered Cells (EGFRt/19-28z/IL-12 CAR T Cells) for the Treatment of Relapsed or Refractory CD19+ Hematologic Malignancies

Start date: June 15, 2024
Phase: Phase 1
Study type: Interventional

This phase I trial tests the safety, side effects, and best dose of genetically engineered cells called EGFRt/19-28z/IL-12 CAR T cells, and to see how they work in treating patients with hematologic malignancies that makes a protein called CD19 (CD19-positive) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Chimeric Antigen Receptor (CAR) T-cell Therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. To improve the effectiveness of the modified T cells and to help the immune system fight cancer cells better, the modified T cells given in this study will include a gene that makes the T cells produce a cytokine (a molecule involved in signaling within the immune system) called interleukin-12 (IL-12). The researchers think that IL-12 may improve the effectiveness of the modified T cells, and it may also strengthen the immune system to fight cancer. Giving EGFRt/19-28z/IL-12 CAR T cells may be safe and tolerable in treating patients with relapsed or refractory CD19+ hematologic malignancies.

NCT ID: NCT06191887 Recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

B-Cell Activating Factor Receptor (BAFFR)-Based Chimeric Antigen Receptor T-Cells With Fludarabine and Cyclophosphamide Lymphodepletion for the Treatment of Relapsed or Refractory B-cell Hematologic Malignancies

Start date: March 18, 2024
Phase: Phase 1
Study type: Interventional

This phase I trial tests safety, side effects and best dose of B-cell activating factor receptor (BAFFR)-based chimeric antigen receptor T-cells, with fludarabine and cyclophosphamide lymphodepletion, for the treatment of patients with B-cell hematologic malignancies that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). BAFFR-based chimeric antigen receptor T-cells is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Giving chemotherapy, such as fludarabine and cyclophosphamide, helps ill cancer cells in the body and helps prepare the body to receive the BAFFR based chimeric antigen receptor T-cells. Giving BAFFR based chimeric antigen receptor T-cells with fludarabine and cyclophosphamide for lymphodepletion may work better for the treatment of patients with relapsed or refractory B-cell hematologic malignancies.

NCT ID: NCT05453396 Recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Loncastuximab Tesirine for the Treatment of Relapsed or Refractory B-Cell Malignancies

Start date: August 7, 2023
Phase: Phase 2
Study type: Interventional

This phase II trial tests whether loncastuximab tesirine works to shrink tumors in patients with B-cell malignancies that have come back (relapsed) or does not respond to treatment (refractory). Loncastuximab tesirine is a monoclonal antibody, called loncastuximab, linked to a chemotherapy drug, called tesirine. Loncastuximab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as CD19 receptors, and delivers tesirine to kill them.

NCT ID: NCT05152459 Withdrawn - Clinical trials for Refractory Follicular Lymphoma

Tazemetostat in Combination With Umbralisib and Ublituximab for the Treatment Relapsed or Refractory Follicular Lymphoma

Start date: May 1, 2023
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial tests the safety, side effects, and best dose of tazemetostat and umbralisib and whether tazemetostat in combination with umbralisib and ublituximab works to shrink tumors in patients with follicular lymphoma that has come back (relapsed) or does not respond to treatment (refractor). Tazemetostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Umbralisib may help block the formation of growths that may become cancer. Ublituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving tazemetostat in combination with umbralisib and ublituximab may work better in treating follicular lymphoma.

NCT ID: NCT04836832 Withdrawn - Clinical trials for Recurrent Marginal Zone Lymphoma

Acalabrutinib and Duvelisib for the Treatment of Relapsed/Refractory Indolent Non-Hodgkin Lymphoma

Start date: July 1, 2022
Phase: Phase 1
Study type: Interventional

This phase Ib/II trial studies the side effects of acalabrutinib and duvelisib and how well they work in treating patients with indolent non-Hodgkin lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Acalabrutinib inhibits a signaling molecule called Bruton tyrosine kinase and blocks cancer cell proliferation, growth, and survival. Duvelisib is designed to block a protein called PI3 kinase in order to stop cancer growth and cause changes in the immune system that may allow the immune system to better act against cancer cells. Giving acalabrutinib and duvelisib together may work better to block cancer growth than therapy of either drug alone.

NCT ID: NCT04635683 Withdrawn - Clinical trials for Recurrent Mantle Cell Lymphoma

Lenalidomide, Umbralisib, and Ublituximab for the Treatment of Relapsed or Refractory Indolent Non-Hodgkin Lymphoma or Mantle Cell Lymphoma

Start date: September 30, 2022
Phase: Phase 1
Study type: Interventional

This phase I trial studies the safety and how effective the combination of ublituximab, umbralisib, and lenalidomide is in certain types of indolent (slow-growing) non-Hodgkin's lymphoma or mantle cell lymphoma. Lenalidomide may stimulate the immune system in different ways and stop cancer cells from growing. Lenalidomide may also stop the growth of non-Hodgkin's lymphoma by blocking blood flow to the cancer. Umbralisib is designed to block a protein called PI3 kinase in order to stop cancer growth and cause changes in the immune system that may allow the immune system to better act against cancer cells. Ublituximab is an antibody that attaches to the lymphoma cells and triggers immune reactions that may result in the death of the targeted lymphoma cells.

NCT ID: NCT04587687 Recruiting - Clinical trials for Refractory Follicular Lymphoma

Brentuximab Vedotin and Bendamustine for the Treatment of Relapsed or Refractory Follicular Lymphoma

Start date: December 4, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial investigates how well brentuximab vedotin and bendamustine work in treating patients with follicular lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Brentuximab vedotin is a monoclonal antibody, brentuximab, linked to a toxic agent called vedotin. Brentuximab attaches to CD30 positive cancer cells in a targeted way and delivers vedotin to kill them. Chemotherapy drugs, such as bendamustine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial is being done to determine if the combination of brentuximab vedotin plus bendamustine is safe and to determine the effectiveness of the combination.

NCT ID: NCT04578600 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

CC-486, Lenalidomide, and Obinutuzumab for the Treatment of Recurrent or Refractory CD20 Positive B-cell Lymphoma

Start date: October 23, 2020
Phase: Phase 1
Study type: Interventional

This phase I/Ib trial investigates the side effects of CC-486 and how well it works in combination with lenalidomide and obinutuzumab in treating patients with CD20 positive B-cell lymphoma that has come back (recurrent) or has not responded to treatment (refractory). Chemotherapy drugs, such as CC-486, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Lenalidomide is a drug that alters the immune system and may also interfere with the development of tiny blood vessels that help support tumor growth. Therefore, in theory, it may reduce or prevent the growth of cancer cells. Obinutuzumab is a type of antibody therapy that targets and attaches to the CD20 proteins found on follicular lymphoma cells as well as some healthy blood cells. Once attached to the CD20 protein the obinutuzumab is thought to work in different ways, including by helping the immune system destroy the cancer cells and by destroying the cancer cells directly. Giving CC-486 with lenalidomide and obinutuzumab may improve response rates, quality, and duration, and minimize adverse events in patients with B-cell lymphoma.

NCT ID: NCT04447716 Recruiting - Clinical trials for Recurrent Marginal Zone Lymphoma

An Early Phase Study of Venetoclax, Lenalidomide, and Rituximab/Hyaluronidase in Slow-Growing Lymphomas That Have Come Back After Treatment or Have Not Responded to Treatment

Start date: October 16, 2020
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of venetoclax when given together with lenalidomide and rituximab hyaluronidase in treating patients with follicular lymphoma and marginal zone lymphoma that has come back after treatment (relapsed) or has not responded to treatment (refractory). Venetoclax may stop the growth of cancer cells by blocking the action of a protein called Bcl-2, that helps cancer cells survive. Immunotherapy with lenalidomide, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Immunotherapy with monoclonal antibodies, such as rituximab and rituximab hyaluronidase, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. The purpose of this research is to determine if the combination of three drugs, venetoclax, lenalidomide, and rituximab hyaluronidase are safe to administer in patients whose low-grade lymphoma (follicular or marginal zone) has come back after initial therapy or was not responsive to initial therapy.

NCT ID: NCT04205409 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Nivolumab for Relapsed, Refractory, or Detectable Disease Post Chimeric Antigen Receptor T-cell Treatment in Patients With Hematologic Malignancies

Start date: June 5, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well nivolumab works for the treatment of hematological malignancies that have come back (relapsed), does not respond (refractory), or is detectable after CAR T cell therapy. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.