View clinical trials related to Recurrent Bladder Carcinoma.
Filter by:This phase I trial studies the side effects and best dose of recombinant EphB4-HSA fusion protein (sEphB4-HSA), and to see how well it works in treating participants with bladder cancer that has come back or that isn't responding to bacillus Calmette-Guerin (BCG) vaccine treatment. sEphB4-HAS prevents tumor cells from multiplying and blocks several compounds that promote the growth of blood vessels that bring nutrients to the tumor. Giving sEphB4-HSA may work better in treating participants with bladder cancer.
This phase I trial studies the best dose and side effects of trigriluzole in combination with nivolumab and pembrolizumab in treating patients with solid malignancies or lymphoma that has spread to other places in the body or cannot be removed by surgery. Trigriluzole may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as nivolumab and pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Giving trigriluzole in combination with nivolumab and pembrolizumab may work better at treating patients with solid malignancies or lymphoma.
This pilot phase II trial studies how well sapanisertib works in treating patients with bladder cancer that has spread from where it started to nearby tissue or lymph nodes (locally advanced) or other places in the body (metastatic) with tuberous sclerosis (TSC)1 and/or TSC2 mutations (changes in deoxyribonucleic acid [DNA]).Sapanisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This pilot phase II trial studies how well sapanisertib works in treating patients with bladder cancer that has spread from where it started to nearby tissue or lymph nodes (locally advanced) or other places in the body (metastatic) with tuberous sclerosis (TSC)1 and/or TSC2 mutations (changes in deoxyribonucleic acid [DNA]). Sapanisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
The purpose of this study is to evaluate the efficacy (the effect of drug on tumor) and the tolerability (the effect of drug on the body) of pembrolizumab, when given as a single agent in patients with bladder tumors. Another purpose of the study is to see what tumor characteristics are associated with increased efficacy of the pembrolizumab. Pembrolizumab (MK-3475) is an antibody (a human protein that sticks to a part of the tumor and/or immune cells) designed to allow the body's immune system to work against tumor cells. Pembrolizumab is Food and drug Administration (FDA) approved for the treatment of advanced melanoma (a type of skin cancer) and some types of lung cancer. It is not yet approved by the United States Food and Drug Administration (USFDA) for bladder cancer, hence it is considered an investigational agent for this disease.
This pilot clinical trial studies the side effects of recombinant EphB4-HSA fusion protein before surgery in treating patients with transitional cell carcinoma of the bladder, prostate cancer, or kidney cancer. Recombinant EphB4-HSA fusion protein may block an enzyme needed for tumor cells to multiply and may also prevent the growth of new blood vessels that bring nutrients to the tumor. Giving recombinant EphB4-HSA fusion protein before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed.
This pilot trial studies how well nanoparticle albumin-bound rapamycin works in treating patients with cancer that as has spread to other places in the body and usually cannot be cured or controlled with treatment (advanced cancer) and that has an abnormality in a protein called mechanistic target of rapamycin (mTOR). Patients with this mutation are identified by genetic testing. Patients then receive nanoparticle albumin-bound rapamycin, which may stop the growth of cancer cells by blocking the mTOR enzyme, which is needed for cell growth and multiplication. Using treatments that target a patient's specific mutation may be a more effective treatment than the standard of care treatment.
This phase II MATCH screening and multi-sub-trial studies how well treatment that is directed by genetic testing works in patients with solid tumors, lymphomas, or multiple myelomas that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and does not respond to treatment (refractory). Patients must have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
This phase I trial studies the side effects and best dose of pembrolizumab when given together with docetaxel or gemcitabine hydrochloride in treating patients with previously treated urothelial cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment (advanced) or that has spread from the primary site (place where it started) to other places in the body (metastatic). Monoclonal antibodies, such as pembrolizumab, may block tumor growth in different ways by targeting certain cells. Drugs used in chemotherapy, such as docetaxel and gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pembrolizumab together with docetaxel or gemcitabine hydrochloride may be a better treatment for urothelial cancer.
This randomized phase II trial studies how well erlotinib hydrochloride works in treating patients with bladder cancer undergoing surgery. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.