View clinical trials related to Recurrent Anaplastic Astrocytoma.
Filter by:This is a multi-centered, radiation dose escalation, open, exploratory, Phase 1/2a clinical trial on the safety, efficacy and pharmacokinetic characteristics of BNCT in patients with recurrent high-grade gliomas. The Phase I clinical study is to explore the adequate radiation dose level of BNCT based on confirmation of the maximum tolerated dose (radiation dose) of BNCT in patients with recurrent high-grade gliomas and characterize the safety, efficacy and pharmacokinetics. To evaluate the primary objective of tolerability, subject population with history of exposure to a similar treatment recurrent high-grade glioma who received prior standard radiotherapy will be recruited. The Phase IIa is to confirm the efficacy and safety after irradiation of radiation dose confirmed in the Phase I clinical study. To evaluate the primary objective of efficacy, subject population with glioblastoma (The 2021 WHO Classification of Tumors of the Central Nervous System, Glioblastoma IDH-wild type, WHO Grade 4) will be recruited.
This phase I trial studies the effect of multiple doses of NSC-CRAd-S-pk7 in treating patients with high-grade gliomas that have come back (recurrent). NSC-CRAd-S-pk7 consists of neural stem cells that carry a virus, which can kill cancer cells. Giving multiple doses of NSC-CRAd-S-pk7 may kill more tumor cells.
This phase I trial studies best dose and side effects of oncolytic adenovirus DNX-2401 in treating patients with high-grade glioma that has come back (recurrent). Oncolytic adenovirus DNX-2401 is made from the common cold virus that has been changed in the laboratory to make it less likely to cause an infection (such as a cold). The virus is also changed to target brain cancer cells and attack them.
This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well laser interstitial thermal therapy and lomustine work in treating patients with glioblastoma or anaplastic astrocytoma that has come back. Using laser to heat the tumor cells may help to kill them. Drugs used in chemotherapy, such as lomustine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving laser interstitial thermal therapy and lomustine may work better in treating patients with glioblastoma or anaplastic astrocytoma.
The purpose of this study is to compare the efficacy and safety of eflornithine in combination with lomustine, compared to lomustine taken alone, in treating patients whose anaplastic astrocytoma has recurred/progressed after radiation and temozolomide chemotherapy.
This phase I trial studies the side effects and best dose of carboxylesterase-expressing allogeneic neural stem cells when given together with irinotecan hydrochloride in treating patients with high-grade gliomas that have come back. Placing genetically modified neural stem cells into brain tumor cells may make the tumor more sensitive to irinotecan hydrochloride. Irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving carboxylesterase-expressing allogeneic neural stem cells and irinotecan hydrochloride may be a better treatment for high-grade gliomas.