View clinical trials related to Recurrent Adult Brain Tumor.
Filter by:This clinical trial compares fluorine F 18 fluorodopa (18F FDOPA) positron emission tomography (PET) with standard magnetic resonance imaging (MRI) in measuring tumors in patients with glioma that is newly diagnosed or recurrent (has returned). 18F FDOPA is a radioactive drug that binds to tumor cells and is captured in images by PET. Computed tomography (CT) and MRI are used with PET to describe information regarding the function, location, and size of the tumor. PET/CT or PET/MRI may be more accurate than standard MRI in helping doctors find and measure brain tumors.
This pilot clinical trial studies advanced magnetic resonance imaging (MRI) techniques in measuring treatment response in patients with high-grade glioma. New diagnostic procedures, such as advanced MRI techniques at 3 Tesla, may be more effective than standard MRI in measuring treatment response in patients receiving treatment for high-grade gliomas.
This randomized phase II trial studies how well giving vaccine therapy with or without bevacizumab works in treating patients with recurrent glioblastoma multiforme that can be removed by surgery. Vaccines consisting of heat shock protein-peptide complexes made from a person's own tumor tissue may help the body build an effective immune response to kill tumor cells that may remain after surgery. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them. It is not yet known whether giving vaccine therapy is more effective with or without bevacizumab in treating glioblastoma multiforme.
The purpose of this study is to investigate the safety and performance of an investigational agent, known as 5-ALA or Gliolan (aminolevulinic acid), that many be useful to a surgeon for visualizing a tumor during surgery. It is also being studied to determine if there are differences in what Gliolan shows a surgeon compared to intraoperative magnetic resonance imaging (MRI)
This phase I trial is studying the side effects and best dose of RO4929097 in treating patients with recurrent invasive gliomas. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth
This clinical trial studies yoga therapy in treating patients with malignant brain tumors. Yoga therapy may improve the quality of life of patients with brain tumors
This phase I/II trial is studying the side effects and the best dose of RO4929097 to see how well it works when given together with bevacizumab compared to bevacizumab alone in treating patients with progressive or recurrent malignant glioma. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving RO4929097 together with bevacizumab may kill more tumor cells.
This phase I trial is studying the side effects and best dose of aminolevulinic acid during surgery in treating patients with malignant brain tumors. Aminolevulinic acid becomes active when it is exposed to a certain kind of light and may help doctors find and remove tumor cells during surgery
This phase I trial is studying the side effects and best dose of erlotinib hydrochloride when given with isotretinoin in treating patients with recurrent malignant glioma. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Isotretinoin may help cells that are involved in the body's immune response to work better. Giving erlotinib hydrochloride together with isotretinoin may kill more tumor cells
This randomized phase II trial is studying how well neoadjuvant and adjuvant fenretinide works compared to adjuvant fenretinide alone in treating patients who are undergoing surgical resection for recurrent glioblastoma multiforme. Chemotherapy drugs, such as fenretinide, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving chemotherapy before surgery may shrink the tumor so that it can be removed. Giving chemotherapy after surgery may kill any remaining tumor cells. It is not yet known whether neoadjuvant and adjuvant fenretinide is more effective than adjuvant fenretinide alone