Radiotherapy Clinical Trial
— REHABrainOfficial title:
Analysis of the Cognitive-behavioral Dysfunctions Profile and the Potential of Neuroplasticity in Patients With Brain Tumors Subjected to Selected Radiotherapy Techniques and the Possibility of Their Compensation by Psycho-physical Training
Primary and secondary brain tumors are a constant challenge for the medicine. Tissue sensitivity to ionizing radiation differs and depends on numerous factors and the same dose of radiation may produce different effects in particular structures of the CNS. It can also affect the surrounding healthy tissues and lead to adverse effects like the cognitive or physical function impairment. One of brain structures most sensitive to ionizing radiation is the limbic system, especially the hippocampus, because it is here that the postnatal neurogenesis takes place via neural stem cells, which are a self-renewing population of precursor cells. There have been no studies that would thoroughly examine the impact of different CNS radiation therapy techniques on the cognitive function, potential neuroplasticity markers or blood-brain barrier damage in brain tumor patients with a concomitant use of neurocognitive combination therapies or physical exercise, and their impact on the CNS function. The aim of the study is to assess the impact of selected RT techniques: IMRT, WBRT, and CyberKnife (SRS) on the processes regulating cognitive and physical function in patients with primary (Group III and IV, WHO, 2016) and metastatic CNS tumors. The secondary objective is the analysis of the effect of selected forms of neurorehabilitation on the parameters studied. The study will be a prospective clinical trial conducted in 150 patients. Patient evaluation will be carried out before RT, after RT, during a follow-up visit-3 months after RT, and finally after 6 months. The methods will be used: analysis of the blood-brain barrier permeability markers including exact connection proteins, markers confirming neuroplasticity of the brain, cerebral secretory activity, and onco- and anti-neuronal antibody activity, brain structure analysis (MRI) and volume testing of selected brain structures, and assessment of cognitive and physical function of the patients. The study will be a part of the search trend aiming to explain the mechanism of the formation of cognitive-behavioral disorders in humans based on the most fundamental principles governing information processing in CNS, and the impact of neoplasia and ionizing radiation on selected brain structures and functions. The results of the study might become a starting point for the formulation of new guidelines on the level of physical activity or cognitive exercise in patients treated with CNS radiation therapy.
Status | Recruiting |
Enrollment | 150 |
Est. completion date | March 31, 2025 |
Est. primary completion date | March 31, 2025 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 70 Years |
Eligibility | Inclusion criteria: - Patients with three different CNS groups of tumors: from III and IV brain tumor groups, and metastatic tumors enrolled to RT, - Age between 18-70 years, - good general health conditions (according to Eastern Cooperative Oncology Group (ECOG) 0-2), - obtaining informed consent for participation in the study. Exclusion criteria: - Patients with numerous tumors (above two), - psychological or psychiatric illnesses treated pharmacologically, - neurological disorders (e.g. MS, Parkinson's disease, meningitis, etc.), - significant clinical circulatory failure (above III NYHA). |
Country | Name | City | State |
---|---|---|---|
Poland | Greater Poland Cancer Centre | Poznan | Greater Poland |
Lead Sponsor | Collaborator |
---|---|
The Greater Poland Cancer Centre | National Science Centre, Poland |
Poland,
Attia A, Page BR, Lesser GJ, Chan M. Treatment of radiation-induced cognitive decline. Curr Treat Options Oncol. 2014 Dec;15(4):539-50. doi: 10.1007/s11864-014-0307-3. — View Citation
Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008 Sep;110(8):763-73. doi: 10.1016/j.clineuro.2008.05.013. Epub 2008 Jul 7. — View Citation
Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci. 2001 Sep 1;21(17):6718-31. doi: 10.1523/JNEUROSCI.21-17-06718.2001. — View Citation
Blyth BJ, Farhavar A, Gee C, Hawthorn B, He H, Nayak A, Stocklein V, Bazarian JJ. Validation of serum markers for blood-brain barrier disruption in traumatic brain injury. J Neurotrauma. 2009 Sep;26(9):1497-1507. doi: 10.1089/neu.2008.0738. — View Citation
Fischl B. FreeSurfer. Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10. — View Citation
Greene-Schloesser D, Moore E, Robbins ME. Molecular pathways: radiation-induced cognitive impairment. Clin Cancer Res. 2013 May 1;19(9):2294-300. doi: 10.1158/1078-0432.CCR-11-2903. Epub 2013 Feb 6. — View Citation
Hipkiss AR, Cartwright SP, Bromley C, Gross SR, Bill RM. Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential? Chem Cent J. 2013 Feb 25;7(1):38. doi: 10.1186/1752-153X-7-38. — View Citation
Kanner AA, Marchi N, Fazio V, Mayberg MR, Koltz MT, Siomin V, Stevens GH, Masaryk T, Aumayr B, Vogelbaum MA, Barnett GH, Janigro D. Serum S100beta: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer. 2003 Jun 1;97(11):2806-13. doi: 10.1002/cncr.11409. Erratum In: Cancer. 2006;107(9 No 1):2314. Ayumar, Barbara [corrected to Aumayr, Barbara]. — View Citation
Louis DN, et al. (2016) WHO classification of tumours of the central nervous system, ed 4 Lyon, IARC Press
Manda K, Ueno M, Anzai K. Cranial irradiation-induced inhibition of neurogenesis in hippocampal dentate gyrus of adult mice: attenuation by melatonin pretreatment. J Pineal Res. 2009 Jan;46(1):71-8. doi: 10.1111/j.1600-079X.2008.00632.x. Epub 2008 Sep 16. — View Citation
McDuff SG, Taich ZJ, Lawson JD, Sanghvi P, Wong ET, Barker FG 2nd, Hochberg FH, Loeffler JS, Warnke PC, Murphy KT, Mundt AJ, Carter BS, McDonald CR, Chen CC. Neurocognitive assessment following whole brain radiation therapy and radiosurgery for patients with cerebral metastases. J Neurol Neurosurg Psychiatry. 2013 Dec;84(12):1384-91. doi: 10.1136/jnnp-2013-305166. Epub 2013 May 28. — View Citation
Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011 May 26;70(4):687-702. doi: 10.1016/j.neuron.2011.05.001. — View Citation
Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 2003 Jul 15;63(14):4021-7. — View Citation
Schulzke JD, Fromm M. Tight junctions: molecular structure meets function. Ann N Y Acad Sci. 2009 May;1165:1-6. doi: 10.1111/j.1749-6632.2009.04925.x. — View Citation
Sun YX, Chu GL (2010) Expression changes of tight junction proteins ZO-1 and occludin after hypoxic-ischemic brain damage in neonatal rats. Zhongguo Xiandai Yixue Zazhi. 20(21):3210-3213
Voss MW, Prakash RS, Erickson KI, Basak C, Chaddock L, Kim JS, Alves H, Heo S, Szabo AN, White SM, Wojcicki TR, Mailey EL, Gothe N, Olson EA, McAuley E, Kramer AF. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci. 2010 Aug 26;2:32. doi: 10.3389/fnagi.2010.00032. eCollection 2010. — View Citation
Wen PY, Chang SM, Van den Bent MJ, Vogelbaum MA, Macdonald DR, Lee EQ. Response Assessment in Neuro-Oncology Clinical Trials. J Clin Oncol. 2017 Jul 20;35(21):2439-2449. doi: 10.1200/JCO.2017.72.7511. Epub 2017 Jun 22. — View Citation
Wu PH, Coultrap S, Pinnix C, Davies KD, Tailor R, Ang KK, Browning MD, Grosshans DR. Radiation induces acute alterations in neuronal function. PLoS One. 2012;7(5):e37677. doi: 10.1371/journal.pone.0037677. Epub 2012 May 25. — View Citation
* Note: There are 18 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Neuropsychological Assessment | The study will include neurological examination and clinimetric evaluation according the Polish Psychological Association with the use of Montreal Cognitive Assessment (MoCA) 7.2 scale as well as the Psychology Experiment Building Language (PEBL) software for objective evaluation of selected cognitive and behavior functions. | up to 48 months | |
Other | Functional Assessment | For general assessment of physical, psychological and social function the investigators will use the Functional Independence Measures (FIM; min. 0 - max.126) system. Higher scores means better outcome. It is the scoring system that may be able to objectively determine impairments in different domains. | up to 48 months | |
Primary | Markers of BBB disruption | The astrocytic protein S-100ß will be estimated using enzyme-linked immunoassay (ELISA). | up to 48 months | |
Primary | Circulating tight junction-related proteins | To estimate circulating tight junction-related proteins (OCLN, CLDN5, ZO-1) concentrations, rabbit anti - human OCLN antibodies will be used. | up to 48 months | |
Primary | Onkoneural antibodies in blood | Onconeural antibodies will be identified with indirect immunofluorescence and confirmed with Line blott with the use of recombinants. | up to 48 months | |
Secondary | Anti-neural antibodies in blood | Anti-neural antibodies will be tested by means of indirect immunofluorescence only. | up to 48 months | |
Secondary | Superficial anti-neuronal antibodies in blood | Superficial anti-neuronal antibodies will be identified in patients' serum by means of cell-based assay. | up to 48 months | |
Secondary | MRI scans and the selected structures of the brain | The investigators will assess volumetry and morphology of selected brain structures from MRI scans. Hippocampus, thalamus, cerebellum, brainstem, frontal and tempo-parietal lobes, and total brain volume will be determined from the T1-weighted MRI with FreeSurfer, an automated segmentation tool. | up to 48 months |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT03212742 -
Phase I/IIa Study of Concomitant Radiotherapy With Olaparib and Temozolomide in Unresectable High Grade Gliomas Patients
|
Phase 1/Phase 2 | |
Recruiting |
NCT06190782 -
Local Therapy for Oligometastatic ESCC Patients Treated With PD-1 Inhibitor
|
Phase 3 | |
Recruiting |
NCT06120127 -
Postoperative Chemotherapy With/Without Radiotherapy and Immunotherapy for Colorectal Liver Metastases With High Risk of Locally Recurrence
|
Phase 2 | |
Recruiting |
NCT05176002 -
Camrelizumab in Combination With Radiotherapy for Neoadjuvant Esophageal Carcinoma.
|
Phase 1/Phase 2 | |
Not yet recruiting |
NCT05909137 -
Omitting Clinical Target Volume in Radical Treatment of Unresectable Stage III Non-small Cell Lung Cancer
|
||
Recruiting |
NCT02661152 -
DAHANCA 30: A Randomized Non-inferiority Trial of Hypoxia-profile Guided Hypoxic Modification of Radiotherapy of HNSCC.
|
Phase 3 | |
Withdrawn |
NCT02542137 -
Abscopal Effect for Metastatic Small Cell Lung Cancer
|
Phase 2 | |
Completed |
NCT01212731 -
Skull Base and Low Grade Glioma Neurocognitive Magnetic Resonance Imaging (MRI) Study
|
||
Completed |
NCT01168479 -
FLAME: Investigate the Benefit of a Focal Lesion Ablative Microboost in Prostate Cancer
|
Phase 3 | |
Recruiting |
NCT03658343 -
T2* MRI Analysis for Sarcoma
|
N/A | |
Completed |
NCT03280719 -
Whole Breast + Lymph Node Irradiation: Prone Compared to Supine Position in 15 or 5 Fractions
|
N/A | |
Recruiting |
NCT05514327 -
A Study of Ultra-fraction Radiotherapy Bridging CART in R/R DLBCL
|
N/A | |
Recruiting |
NCT05515796 -
Multi-omics Sequencing in Neoadjuvant Immunotherapy of Gastrointestinal Tumors
|
Phase 2 | |
Recruiting |
NCT04453826 -
Concurrent and Adjuvant PD1 Treatment Combined With Chemo-radiotherapy for High-risk Nasopharyngeal Carcinoma
|
Phase 3 | |
Recruiting |
NCT03370926 -
FET-PET and Multiparametric MRI for High-grade Glioma Patients Undergoing Radiotherapy
|
N/A | |
Active, not recruiting |
NCT03870919 -
Locoregional Treatment and Palbociclib in de Novo, Treatment Naive, Stage IV ER+, HER2- Breast Cancer Patients
|
N/A | |
Active, not recruiting |
NCT02428049 -
Radiation Pneumonitis After SBRT for NSCLC
|
||
Recruiting |
NCT04923620 -
Neoadjuvant Cetuximab + Chemotherapy Combined With Short-course Radiotherapy
|
||
Active, not recruiting |
NCT05371795 -
Comparison on Radiotherapy Permanent Skin Marking With Lancets and an Electric Marking Device
|
N/A | |
Recruiting |
NCT03210428 -
Quantitative MR Imaging in Locally Advanced Cervical Cancer
|