Clinical Trials Logo

Clinical Trial Summary

Study objective: To establish a quality control system for gastrointestinal endoscopy based on artificial intelligence technology and an auxiliary diagnosis system that can perform lesion identification, improving the detection rate of early gastrointestinal cancer while standardizing, normalizing, and homogenizing the endoscopic treatment in primary hospitals (including some of the primary hospitals, which are participating in Beijing-Tianjin-Hebei Gastrointestinal Endoscopy Medical Consortium) under Gastrointestinal Endoscopy Artificial Intelligence Cloud Platform as the hardware base. Study design: This study is a prospective, multi-center, real-world study.


Clinical Trial Description

This is a prospective, multi-center, real-world study. Before patients are formally enrolled, all endoscopic examination-related systems and endoscopists would be debugged and trained according to uniform standards and requirements, respectively. Patients who meet the inclusion criteria and do not meet the exclusion criteria are enrolled for this trial. All of them will be asked to sign an informed consent after fully understanding the facts about the research study, and will provide demographic information as well as some specific clinical data. Then, participants will be divided into the intervention group (Artificial intelligence Cloud Platform Auxiliary Group) and the control group (Non-Auxiliary Group). The steps and contents of the gastrointestinal endoscopy examination were completed according to the working routines of the participating units in both groups. Among them, the pre-treatment of endoscopy (such as oral antifoam before gastroscopy, etc. and dregs less diet and intestinal preparation before colonoscopy, etc.) were basically the same in each participating units, and the same equipment and parameters were used to record the whole process of gastrointestinal endoscopy in both groups. The Artificial Intelligence Cloud Platform in the intervention group can automatically complete quality control, history recognition, and auxiliary diagnosis (an alert box would appear on the display screen to alert the endoscopists) while the gastrointestinal endoscopy process is underway. At the same time, all of the above examination processes would be completed by endoscopists alone in the control group. After the endoscopists finish writing the gastrointestinal endoscopy reports, the information on desensitized cases will be automatically uploaded to the Cloud Platform database (excluding any sensitive information that may be utilized to identify the patient), including age, gender, examination data, endoscopic examination information (time and pictures), text contents of the report plus quality control indicators. And the pathological results of biopsies during the examination will be added online by the endoscopist when their official reports are released timely. By comparing and analyzing the results of the two groups, the researchers try to evaluate the performance of the Gastrointestinal Endoscopy Artificial Intelligence Cloud Platform according to the diagnosis rate of early gastrointestinal tract cancer (Primary outcomes) and indicators of quality control of gastrointestinal endoscopy (Secondary outcomes). ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05435872
Study type Interventional
Source Peking Union Medical College Hospital
Contact Shengyu Zhang, M.D.
Phone +8618501155701
Email pumchzsy@126.com
Status Recruiting
Phase N/A
Start date July 9, 2022
Completion date July 1, 2024

See also
  Status Clinical Trial Phase
Completed NCT04589078 - Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
Completed NCT03857438 - Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
Completed NCT04735055 - Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
Not yet recruiting NCT05452993 - Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography N/A
Not yet recruiting NCT04337229 - Evaluation of Comfort Behavior Levels of Newborns With Artificial Intelligence Techniques N/A
Completed NCT05687318 - A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment N/A
Recruiting NCT06051682 - Optimization of the Diagnosis of Bone Fractures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor. N/A
Not yet recruiting NCT06039917 - Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions N/A
Not yet recruiting NCT06362629 - AI App for Management of Atopic Dermatitis N/A
Recruiting NCT06059378 - Real-life Implementation of an AI-based Optical Diagnosis N/A
Recruiting NCT06164002 - A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials N/A
Completed NCT05517889 - Repeatability and Stability of Healthy Skin Features on OCT
Completed NCT04816981 - AI-EBUS-Elastography for LN Staging N/A
Completed NCT05006092 - Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE) N/A
Recruiting NCT04535466 - Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
Enrolling by invitation NCT04719117 - Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
Completed NCT04399590 - Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
Recruiting NCT04126265 - Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps N/A
Recruiting NCT06255808 - Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
Recruiting NCT04131530 - Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence