Clinical Trials Logo

Clinical Trial Summary

A selective neural stimulation as the investigators propose allows to stimulate several muscles via a single electrode. Neural stimulation requires less energy for muscle activation. In our approach, 2 electrodes will be implanted above the elbow on the median and radial nerves. This considerably reduces the number of implanted elements and therefore i) the risk of infection, ii) the risk of failure, iii) the surgical risk through minimally invasive surgery. Our main hypothesis is that multipolar neural electrical stimulation of the median nerve (flexion) and the radial nerve (extension) allows: - on the one hand, a selective, individualized motor activation (muscle by muscle) - on the other hand, a synergistic motor activation (association of several muscles) for the purpose of production of functional movements.


Clinical Trial Description

Electrical stimulation of the muscles has been used for decades in rehabilitation units specializing in the treatment of spinal cord injuries. It has been shown to be effective in building muscle and preventing muscle atrophy following spinal cord injury (SCI) or stroke. It can also be used to reduce spasticity and above all to promote functionally useful motor control. It is then a Functional Electric Stimulation (FES). In the quadriplegic person marked by a severe motor deficiency of the upper limbs, FES is today the only technique allowing to restore a functional gripping movements in the case where the active muscular resources below the elbows are missing or too weak to allow tendon transfer surgery. Like "Freehand", all the devices using FES directly stimulate the muscles (surface, intramuscular or epimysial electrodes) and therefore require a high number of internal components with a theoretical risk of infection and greater rejection. since each muscle must be activated via an electrode (up to 12 in the case of "FreeHand"). The investigators propose instead selective neural stimulation as it allows stimulating several muscles via a single electrode. Neural stimulation requires less energy for muscle activation. In our approach, 2 electrodes will be implanted above the elbow on the median and radial nerves. This considerably reduces the number of implanted elements and therefore i) the risk of infection, ii) the risk of failure, iii) the surgical risk thanks to minimally invasive surgery. The procedure consisted of placing a multi-contact cuff electrode around the radial or median nerves and observing the effects of electrical neural stimulation in terms of muscle selectivity, force produced and movement induced. In a previous study, the investigators already proved through acute intra operative testing (under Ethics Committee approval, #NCT03721861) that: - No failure of the electrodes or of the stimulator was noted. - For all of the 8 subjects, it was possible to selectively stimulate muscle groups to obtain the opening of the thumb and fingers, or the flexion of the thumb, fingers and obtaining possibly functional grip like the forceps with opposition of the thumb or palmar grip. A second feasibility study (Ethics committee registration #2016-A00711-50) with 17 quadriplegic patients assessed the subject's ability to use voluntary contractions of sus lesional muscles (EMG recordings in 8 subjects) or voluntary movements of shoulders (inertial recordings in 9 subjects) to control the movements of a robotic hand or the triggering of an electrical surface stimulation of the muscles of the forearm. All of the patients managed to master the proposed interface after a short familiarization period. On the basis of the results of these two studies, the investigator wish to take an additional step in the development of a gripping assistance device for patients with spinal cord injury: - by proposing the implantation of two cuff electrodes with percutaneous connection on the arm of quadriplegic people. The electrodes will be kept in place for a period of 1 month before being definitively explanted. An implanted cable will connect the electrodes to an external connector. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04306328
Study type Interventional
Source Assistance Publique - Hôpitaux de Paris
Contact
Status Completed
Phase N/A
Start date October 15, 2020
Completion date December 11, 2020

See also
  Status Clinical Trial Phase
Completed NCT00385918 - Robotically Assisted Treadmill Training in Spinal Cord Injury (SCI) N/A
Recruiting NCT05321017 - Wrist Extensor MEP Up-conditioning for Individuals With Incomplete Spinal Cord Injury N/A
Recruiting NCT01958086 - Visuomotor Prosthetic for Paralysis N/A
Terminated NCT01498991 - Spinal Cord Injury Leg Rehabilitation Phase 1/Phase 2
Terminated NCT04265560 - Progressive Resistance Training in Acute Spinal Cord Injury N/A
Recruiting NCT01964261 - Sensory Motor Transformations in Human Cortex N/A
Completed NCT01124292 - Evaluation of a Tongue Operated Assistive Technology for Individuals With Severe Paralysis Phase 1
Completed NCT00270855 - Exercise to Reduce Obesity in Spinal Cord Injury N/A
Completed NCT00656149 - In-home Telerehabilitation for Quadriplegic Hand Function Phase 2/Phase 3
Active, not recruiting NCT00059553 - Retraining Walking After Spinal Cord Injury Phase 2/Phase 3
Terminated NCT00004415 - Study of Combined Intercostal and Diaphragm Pacing for Artificial Respiration in Quadriplegic Patients N/A
Completed NCT00632528 - MEOPA to Improve Physical Therapy Results After Multilevel Surgery Phase 3
Completed NCT01899664 - Upper Extremity Surgery in Spinal Cord Injury N/A
Completed NCT00221767 - Medico-economical Impact of the Brindley Neurosurgical Technique in France N/A
Completed NCT03482310 - Restoring High Dimensional Hand Function to Persons With Chronic High Tetraplegia N/A
Completed NCT02354625 - The Safety of ahSC in Chronic SCI With Rehabilitation Phase 1
Completed NCT01911559 - Effectiveness of Standing Frame on Constipation in Children With Cerebral Palsy N/A
Completed NCT00010374 - Electrical Activation of The Diaphragm for Ventilatory Assist N/A
Withdrawn NCT02861612 - Nerve Transfers to Restore Hand Function in Spinal Cord Injury
Recruiting NCT03161067 - Investigation on the Bidirectional Cortical Neuroprosthetic System N/A