Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT04113421
Other study ID # 2019P002124
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date December 1, 2019
Est. completion date November 30, 2024

Study information

Verified date March 2024
Source Brigham and Women's Hospital
Contact Gregory Piazza, MD, MS
Phone 6177326984
Email gpiazza@partners.org
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Design: U.S.-based, single-center, proof-of-concept study Brief Description: A standard clinical contrast-enhanced chest CT scan performed 48 hours after clinically-indicated standard anticoagulation will be compared with a standard clinically-indicated baseline contrast-enhanced chest CT scan using a previously-studied and previously-validated 3-dimensional reconstruction technique to assess changes in the pulmonary vasculature in patients with acute pulmonary embolism (PE). This previously-studied and previously-validated 3-dimensional reconstruction technique has been used to assess the response of the pulmonary vasculature to catheter-based fibrinolysis in acute PE as well as to assess the pulmonary vasculature in a number of chronic lung diseases. However, the pulmonary vascular response to standard anticoagulation for acute PE has not been assessed previously. Purpose: To compare the pulmonary vasculature before and after standard clinically-indicated anticoagulation for acute PE using a previously-studied and previously-validated 3-dimensional reconstruction technique applied with a standard clinically-indicated baseline contrast-enhanced chest CT scan (used to diagnose the acute PE) and a standard clinical contrast-enhanced chest CT scan performed 48 hours later as indicated by the study protocol. Population: Inpatients diagnosed with acute PE, in whom clinical providers have prescribed standard anticoagulation alone for treatment based on clinical grounds at Brigham and Women's Hospital. Enrollment: 10 subjects with acute PE Clinical Site Location: Single-center, Brigham and Women's Hospital Study Duration: 12 months Primary Imaging Outcome: CT-determined percent change in perfusion of the pulmonary vasculature from baseline to 48 hours in inpatients diagnosed with acute PE, in whom clinical providers have prescribed standard anticoagulation alone for treatment based on clinical grounds at Brigham and Women's Hospital. Secondary Imaging Outcome: CT-determined percent change in right ventricular (RV) volume from baseline to 48 hours in inpatients diagnosed with acute PE, in whom clinical providers have prescribed standard anticoagulation alone for treatment based on clinical grounds at Brigham and Women's Hospital.


Description:

The pulmonary vascular response to ultrasound-facilitated, catheter-directed fibrinolysis for treatment of pulmonary embolism (PE) results in rapid improvement in patient symptoms and right ventricular (RV) recovery, while minimizing the risk of intracranial hemorrhage. The investigators recently completed an analysis of the chest computed tomographic (CT) data from the SEATTLE II Trial of ultrasound-facilitated, catheter-directed fibrinolysis for treatment of PE using a previously-validated 3-dimensional (3D) reconstruction technique pioneered at Brigham and Women's Hospital (BWH). This software-based 3D technique enables anatomic and structural resolution of the distal pulmonary arteries (microvasculature) far beyond the imaging capabilities of clinically utilized methods. This technique also provides a precise quantitation of RV volume and quantification of the perfusion of the proximal and distal pulmonary arteries. In our 3D reconstruction analysis of the multicenter, U.S.-based SEATTLE II Trial chest CT data, the investigators found that loss of intraparenchymal blood vessel volume was associated with RV enlargement and change in distal small vessel pulmonary artery perfusion predicted RV recovery with ultrasound-facilitated, catheter-directed fibrinolysis in subjects with acute PE. These data were presented at the American Heart Association (AHA) Annual Scientific Sessions in 2017 and have been submitted for publication. While ultrasound-facilitated, catheter-directed fibrinolysis has been studied using this 3D reconstruction technique, the pulmonary vascular response in PE patients treated clinically with anticoagulation alone has not been. The investigators propose a study to evaluate inpatients diagnosed with acute PE, in whom clinical providers have already prescribed standard anticoagulation alone for treatment based on clinical grounds at Brigham and Women's Hospital, applying this 3-dimensional reconstruction technique to compare data from a standard clinical contrast-enhanced chest CT scan performed 48 hours after initiation of therapy and those data from the standard clinically-indicated baseline contrast-enhanced chest CT scan. The specific aims for this proposed study are as follows: Aim #1: To quantify the CT-determined percent change in perfusion of the pulmonary vasculature from baseline to 48 hours in inpatients diagnosed with acute PE, in whom clinical providers have prescribed standard anticoagulation alone for treatment based on clinical grounds at Brigham and Women's Hospital. Hypothesis #1: The greatest change in pulmonary vascular perfusion following anticoagulation alone for acute PE will take place in the distal small (<5 mm2 cross-sectional area) pulmonary arteries compared with larger (>5 mm2 cross-sectional area) vessels. However, the magnitude of change will be less than that observed in our previously reported analysis focused on patients with acute PE undergoing ultrasound-facilitated, catheter-based fibrinolysis. Aim #2: To quantify the CT-determined percent change in RV volume from baseline to 48 hours in inpatients diagnosed with acute PE, in whom clinical providers have prescribed standard anticoagulation alone for treatment based on clinical grounds at Brigham and Women's Hospital. Hypothesis #2: RV volume will decrease over 48 hours of anticoagulation alone but the percent change will be less than that observed in our previously reported analysis focused on patients with acute PE undergoing ultrasound-facilitated, catheter-based fibrinolysis


Recruitment information / eligibility

Status Recruiting
Enrollment 10
Est. completion date November 30, 2024
Est. primary completion date December 30, 2023
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Inpatients diagnosed with acute PE, in whom clinical providers have elected to prescribe anticoagulation alone for treatment based on clinical grounds at BWH. - Eligibility for the study will include patients over the age of 18 with bilateral proximal PE on CT (filling defect in = 1 main, lobar, or segmental pulmonary artery), PE symptom duration = 14 days, RV-to-LV diameter ratio = 0.9 on contrast-enhanced chest CT, and a clinically-determined decision to pursue treatment with anticoagulation alone. Exclusion Criteria: 1. Serum creatinine greater than 2 mg/dL 2. GFR < 60 mL/min 3. Pregnancy (pregnancy test will have been done as standardly required by Radiology before the initial clinically-indicated, clinically-protocolled chest CT) 4. Contrast allergy 5. Treatment with any fibrinolytics-based technique, or surgical/ catheter embolectomy 6. Expected hospital stay < 48 hours. The length of stay will be determined by the treating provider prior to enrollment. Subjects will not extend their stay to 48 hours if they are deemed ready for discharge prior to the time.

Study Design


Related Conditions & MeSH terms


Intervention

Diagnostic Test:
Contrast-enhanced chest CT
A single follow-up contrast-enhanced chest CT to compare off-line with the contrast-enhanced chest CT done at baseline for the diagnosis of PE.

Locations

Country Name City State
United States Brigham and Women's Hospital Boston Massachusetts

Sponsors (1)

Lead Sponsor Collaborator
Brigham and Women's Hospital

Country where clinical trial is conducted

United States, 

References & Publications (2)

Piazza G, Hohlfelder B, Jaff MR, Ouriel K, Engelhardt TC, Sterling KM, Jones NJ, Gurley JC, Bhatheja R, Kennedy RJ, Goswami N, Natarajan K, Rundback J, Sadiq IR, Liu SK, Bhalla N, Raja ML, Weinstock BS, Cynamon J, Elmasri FF, Garcia MJ, Kumar M, Ayerdi J, Soukas P, Kuo W, Liu PY, Goldhaber SZ; SEATTLE II Investigators. A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism: The SEATTLE II Study. JACC Cardiovasc Interv. 2015 Aug 24;8(10):1382-1392. doi: 10.1016/j.jcin.2015.04.020. — View Citation

Tapson VF, Sterling K, Jones N, Elder M, Tripathy U, Brower J, Maholic RL, Ross CB, Natarajan K, Fong P, Greenspon L, Tamaddon H, Piracha AR, Engelhardt T, Katopodis J, Marques V, Sharp ASP, Piazza G, Goldhaber SZ. A Randomized Trial of the Optimum Duration of Acoustic Pulse Thrombolysis Procedure in Acute Intermediate-Risk Pulmonary Embolism: The OPTALYSE PE Trial. JACC Cardiovasc Interv. 2018 Jul 23;11(14):1401-1410. doi: 10.1016/j.jcin.2018.04.008. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Perfusion of the pulmonary arteries Percent change in perfusion of the pulmonary arteries using quantitative 3-D vascular reconstruction of baseline and follow-up (at 48 ± 6 hours) standard contrast-enhanced chest CTs. 48 ± 6 hours
Secondary Change in RV volume Percent change in RV volume using quantitative 3-D vascular reconstruction of baseline and follow-up (at 48 ± 6 hours) standard contrast-enhanced chest CTs. 48 ± 6 hours
See also
  Status Clinical Trial Phase
Recruiting NCT05050617 - Point-of-Care Ultrasound in Predicting Adverse Outcomes in Emergency Department Patients With Acute Pulmonary Embolism
Terminated NCT04558125 - Low-Dose Tenecteplase in Covid-19 Diagnosed With Pulmonary Embolism Phase 4
Not yet recruiting NCT06017271 - Predictive Value of Epicardial Adipose Tissue for Pulmonary Embolism and Death in Patients With Lung Cancer
Completed NCT03915925 - Short-term Clinical Deterioration After Acute Pulmonary Embolism
Completed NCT02502396 - Rivaroxaban Utilization for Treatment and Prevention of Thromboembolism in Cancer Patients: Experience at a Comprehensive Cancer Center
Recruiting NCT05171075 - A Study Comparing Abelacimab to Dalteparin in the Treatment of Gastrointestinal/Genitourinary Cancer and Associated VTE Phase 3
Completed NCT04454554 - Prevalence of Pulmonary Embolism in Patients With Dyspnea on Exertion (PEDIS)
Completed NCT03173066 - Ferumoxytol as a Contrast Agent for Pulmonary Magnetic Resonance Angiography Phase 1
Terminated NCT03002467 - Impact Analysis of Prognostic Stratification for Pulmonary Embolism N/A
Completed NCT02611115 - Optimizing Protocols for the Individual Patient in CT Pulmonary Angiography. N/A
Completed NCT02334007 - Extended Low-Molecular Weight Heparin VTE Prophylaxis in Thoracic Surgery Phase 1/Phase 2
Completed NCT01975090 - The SENTRY Clinical Study N/A
Not yet recruiting NCT01357941 - Need for Antepartum Thromboprophylaxis in Pregnant Women With One Prior Episode of Venous Thromboembolism (VTE) N/A
Completed NCT01326507 - Prognostic Value of Heart-type Fatty Acid-Binding Protein (h-FABP) in Acute Pulmonary Embolism N/A
Completed NCT00771303 - Ruling Out Pulmonary Embolism During Pregnancy:a Multicenter Outcome Study
Completed NCT00720915 - D-dimer to Select Patients With First Unprovoked Venous Thromboembolism Who Can Have Anticoagulants Stopped at 3 Months N/A
Completed NCT02476526 - Safety of Low Dose IV Contrast CT Scanning in Chronic Kidney Disease Phase 4
Completed NCT00773448 - Screening for Occult Malignancy in Patients With Idiopathic Venous Thromboembolism N/A
Completed NCT00780767 - Angiojet Rheolytic Thrombectomy in Case of Massive Pulmonary Embolism Phase 2
Completed NCT00816920 - Natural History of Isolated Deep Vein Thrombosis of the Calf