Primary Osteosarcoma of Bone Clinical Trial
Official title:
PNA-mediated Inhibition of the SENP1 Molecular Hub as a Potential Therapeutic Approach for the Suppression of Osteosarcoma Growth and Metastasis (PNA-OS)
NCT number | NCT03798587 |
Other study ID # | PNA-OS |
Secondary ID | |
Status | Not yet recruiting |
Phase | |
First received | |
Last updated | |
Start date | January 2020 |
Est. completion date | December 2021 |
The aim of this project is to test a new powerful PNA-based SENP1 inhibitor, previously
characterized in an in vitro model of OS cell lines.
The most effective PNA, conjugated with a cell-permeable CPP, which is able to inhibit OS
cells viability and invasiveness in both normoxia and hypoxia through SENP1-mediated
inhibition of HIF1α, ZEB1, and Akt, will be investigated for its ability to penetrate and
silence SENP1 expression in ex vivo human OS tissues.
Primary aim:
To determine the ability of PNA-CPP to penetrate into an ex vivo tridimensional tissue of OS,
derived from wasted biological material obtained during OS eradication surgery, and to exert
its biological function of inhibiting SENP1 within the tissue.
Status | Not yet recruiting |
Enrollment | 15 |
Est. completion date | December 2021 |
Est. primary completion date | December 2020 |
Accepts healthy volunteers | No |
Gender | All |
Age group | N/A and older |
Eligibility |
Inclusion Criteria: - Indication for primary OS eradication surgery - Patients hospitalized in Istituto Ortopedico Galeazzi Patients with age =18 years: were/can be recruited within the IRCCS Istituto Ortopedico Galeazzi BioBanca (ethical committee approval n. 29/INT/2017). Patients with age <18 years: will be additionally recruited besides the IRCCS Istituto Ortopedico Galeazzi BioBanca. Exclusion Criteria: - Patients not able to sign the Informed Consent. |
Country | Name | City | State |
---|---|---|---|
Italy | IRCCS Istituto Ortopedico Galeazzi | Milano |
Lead Sponsor | Collaborator |
---|---|
Istituto Ortopedico Galeazzi |
Italy,
Abarrategi A, Tornin J, Martinez-Cruzado L, Hamilton A, Martinez-Campos E, Rodrigo JP, González MV, Baldini N, Garcia-Castro J, Rodriguez R. Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies. Stem Cells Int. 2016;2016:3631764. doi: — View Citation
Bettermann K, Benesch M, Weis S, Haybaeck J. SUMOylation in carcinogenesis. Cancer Lett. 2012 Mar 28;316(2):113-25. doi: 10.1016/j.canlet.2011.10.036. Epub 2011 Nov 2. Review. — View Citation
Cao J, Wang Y, Dong R, Lin G, Zhang N, Wang J, Lin N, Gu Y, Ding L, Ying M, He Q, Yang B. Hypoxia-Induced WSB1 Promotes the Metastatic Potential of Osteosarcoma Cells. Cancer Res. 2015 Nov 15;75(22):4839-51. doi: 10.1158/0008-5472.CAN-15-0711. Epub 2015 S — View Citation
Cui CP, Wong CC, Kai AK, Ho DW, Lau EY, Tsui YM, Chan LK, Cheung TT, Chok KS, Chan ACY, Lo RC, Lee JM, Lee TK, Ng IOL. SENP1 promotes hypoxia-induced cancer stemness by HIF-1a deSUMOylation and SENP1/HIF-1a positive feedback loop. Gut. 2017 Dec;66(12):214 — View Citation
Guan G, Zhang Y, Lu Y, Liu L, Shi D, Wen Y, Yang L, Ma Q, Liu T, Zhu X, Qiu X, Zhou Y. The HIF-1a/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells. Cancer Lett. 2015 Feb 1;357(1):254-264. doi: 10.1016/j.canlet.2014.11.034. Epu — View Citation
Hoyer J, Neundorf I. Peptide vectors for the nonviral delivery of nucleic acids. Acc Chem Res. 2012 Jul 17;45(7):1048-56. doi: 10.1021/ar2002304. Epub 2012 Mar 28. — View Citation
Li R, Wei J, Jiang C, Liu D, Deng L, Zhang K, Wang P. Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Res. 2013 Sep 15;73(18):5742-53. doi: 10.1158/0008-5472.CAN-13-0538. Epub 2013 Jul 24. — View Citation
McClorey G, Banerjee S. Cell-Penetrating Peptides to Enhance Delivery of Oligonucleotide-Based Therapeutics. Biomedicines. 2018 May 5;6(2). pii: E51. doi: 10.3390/biomedicines6020051. Review. — View Citation
Meijer TG, Naipal KA, Jager A, van Gent DC. Ex vivo tumor culture systems for functional drug testing and therapy response prediction. Future Sci OA. 2017 Mar 27;3(2):FSO190. doi: 10.4155/fsoa-2017-0003. eCollection 2017 Jun. Review. — View Citation
Muff R, Botter SM, Husmann K, Tchinda J, Selvam P, Seeli-Maduz F, Fuchs B. Explant culture of sarcoma patients' tissue. Lab Invest. 2016 Jul;96(7):752-62. doi: 10.1038/labinvest.2016.49. Epub 2016 Apr 25. — View Citation
Naipal KA, Verkaik NS, Sánchez H, van Deurzen CH, den Bakker MA, Hoeijmakers JH, Kanaar R, Vreeswijk MP, Jager A, van Gent DC. Tumor slice culture system to assess drug response of primary breast cancer. BMC Cancer. 2016 Feb 9;16:78. doi: 10.1186/s12885-0 — View Citation
Oh SY, Ju Y, Park H. A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides. Mol Cells. 2009 Oct 31;28(4):341-5. doi: 10.1007/s10059-009-0134-8. Epub 2009 Sep 30. — View Citation
Philip B, Ito K, Moreno-Sánchez R, Ralph SJ. HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis. 2013 Aug;34(8):1699-707. doi: 10. — View Citation
Shen A, Zhang Y, Yang H, Xu R, Huang G. Overexpression of ZEB1 relates to metastasis and invasion in osteosarcoma. J Surg Oncol. 2012 Jun 15;105(8):830-4. doi: 10.1002/jso.23012. Epub 2011 Dec 27. — View Citation
Song C, Liu W, Li J. USP17 is upregulated in osteosarcoma and promotes cell proliferation, metastasis, and epithelial-mesenchymal transition through stabilizing SMAD4. Tumour Biol. 2017 Jul;39(7):1010428317717138. doi: 10.1177/1010428317717138. — View Citation
van der Kuip H, Mürdter TE, Sonnenberg M, McClellan M, Gutzeit S, Gerteis A, Simon W, Fritz P, Aulitzky WE. Short term culture of breast cancer tissues to study the activity of the anticancer drug taxol in an intact tumor environment. BMC Cancer. 2006 Apr — View Citation
Wang X, Liang X, Liang H, Wang B. SENP1/HIF-1a feedback loop modulates hypoxia-induced cell proliferation, invasion, and EMT in human osteosarcoma cells. J Cell Biochem. 2018 Feb;119(2):1819-1826. doi: 10.1002/jcb.26342. Epub 2017 Sep 27. — View Citation
Wu JC, Meng QC, Ren HM, Wang HT, Wu J, Wang Q. Recent advances in peptide nucleic acid for cancer bionanotechnology. Acta Pharmacol Sin. 2017 Jun;38(6):798-805. doi: 10.1038/aps.2017.33. Epub 2017 Apr 17. Review. — View Citation
Xia W, Tian H, Cai X, Kong H, Fu W, Xing W, Wang Y, Zou M, Hu Y, Xu D. Inhibition of SUMO-specific protease 1 induces apoptosis of astroglioma cells by regulating NF-?B/Akt pathways. Gene. 2016 Dec 31;595(2):175-179. doi: 10.1016/j.gene.2016.09.040. Epub — View Citation
Xu XM, Liu W, Cao ZH, Liu MX. Effects of ZEB1 on regulating osteosarcoma cells via NF-?B/iNOS. Eur Rev Med Pharmacol Sci. 2017 Mar;21(6):1184-1190. — View Citation
Yee Koh M, Spivak-Kroizman TR, Powis G. HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci. 2008 Nov;33(11):526-34. doi: 10.1016/j.tibs.2008.08.002. Epub 2008 Sep 21. Review. — View Citation
Zhang W, Sun H, Shi X, Wang H, Cui C, Xiao F, Wu C, Guo X, Wang L. SENP1 regulates hepatocyte growth factor-induced migration and epithelial-mesenchymal transition of hepatocellular carcinoma. Tumour Biol. 2016 Jun;37(6):7741-8. doi: 10.1007/s13277-015-44 — View Citation
* Note: There are 22 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Determination of SENP1 expression in OS samples | OS samples, already existing in the BioBanca as frozen samples preserved in liquid nitrogen at BioRep Service-Provider (BioRep S.r.l. Via Olgettina 60, 20132, Milano), will be used to determine the initial expression levels of SENP1 in OS by RT-qPCR. For this, samples will be homogenized, total RNA will be extracted and RT-qPCR will be performed assaying for SENP1 expression levels. | 8 months | |
Primary | Ex vivo analysis of the PNA-R8 silencing ability in osteosarcoma samples. | Freshly collected OS samples will be preserved in physiological solution until usage. The OS samples will be cut in 3 mm3 pieces, placed in a 24-multiwell culture plate, and cultivated ex vivo as organotypic OS cultures in both normoxia and hypoxia-induced microenvironment under orbital rotation. OS cultures will be treated with senpPNA-R8, and SENP1 expression in naïve and PNA-treated samples will be determined by RT-qPCR and immunohistochemistry in paraffin-embedded sections. The ability of the PNA-R8 to penetrate within the hypoxic core of the OS samples will be assessed: after incubation with scrPNA-R8-Fl, sections will be immediately frozen (-80°C), processed and analyzed by immunofluorescence. | 16 months |