View clinical trials related to Primary Brain Neoplasm.
Filter by:This study evaluates patient perceptions around quality of care through telemedicine in neuro-oncology. Studying questionnaires related to perceptions quality of care through telemedicine in patients with brain cancer may help doctors to improve the delivery of care through this modality.
This trial studies how an imaging agent, hyperpolarized carbon C 13 pyruvate, works in diagnosing glioma in patients with brain tumors. Giving hyperpolarized carbon C 13 pyruvate before an advanced imaging technique called a magnetic resonance spectroscopic imaging (MRSI) scan may help researchers better diagnose glioma in patients with brain tumors.
This pilot clinical trial study will assess the inflammatory response of brain tumors or other central nervous system conditions in pediatric and adult patients using ferumoxytol-enhanced MRI. Imaging features will be correlated with the number of inflammatory cells (macrophages) at histopathology. Determining the extent of inflammation associated with pathologies in the central nervous system may be helpful for diagnostic and prognostic purposes as well as monitoring treatment response of current and future immunotherapies.
This pilot clinical trial studies fluorine F 18 fluorothymidine (FLT) positron emission tomography (PET)/computed tomography (CT) in measuring cell proliferation in patients with brain tumors. Comparing results of diagnostic procedures done before, during, and after treatment may help doctors measure tumor growth and plan the best treatment.
This phase II trial studies how well magnetic resonance imaging (MRI) using contrast imaging agent ferumoxytol works in comparison to standard imaging agent gadolinium in measuring tumors in patients undergoing treatment for brain tumors or other tumors that have spread to the brain. Diagnostic procedures, such as MRI, may help find and diagnose disease and find out how far the disease has spread. MRI scans use radio waves and a powerful magnet linked to a computer to create detailed pictures of areas inside the body. The contrast imaging agent ferumoxytol consists of small iron particles taken by the blood stream to the brain and to the area of the tumor. It is highly visible on the MRI, and may help visualize the blood flow going through the tumor better than gadolinium can. Using a more sensitive and faster 7 Tesla (7T) magnet MRI in conjunction with a contrast imaging agent may provide a better way to measure tumors than the 3 Tesla (3T) magnet MRI in patients with brain tumors.