View clinical trials related to Prematurity.
Filter by:The purpose of this study is to develop biocompatible wireless electronic devices that will allow continuous, non-invasive hemodynamic and physiology measurements in the ICU.
Electric Impedance Tomography (EIT) is a lung monitoring technique based on the injection of small currents and voltage measurements using electrodes on the skin surface generating cross-sectional images representing impedance change in a slice of the thorax. It is a real time, radiation free, non-invasive and portable. Neonatal respiratory distress syndrome (RDS) is a respiratory disorder resulting from immaturity of the lung structure and lack of surfactant. It is one the most common conditions in premature infants. Many of these infants require either invasive or non-invasive respiratory support. The goal of the study is to investigate the dynamic changes in pulmonary aeration during assisted breathing in very low birthweight preterm infants using pulmonary electrical impedance tomography. Currently most widely used methods to assess respiratory lung function are either invasive and/or indirect (ABG, pulse oximetry, transcutaneous pCO2 measurement), lacks temporal resolution (lung ultrasound) or emit ionizing radiation (CT). EIT provides information on regional lung aeration without the aforementioned shortcomings.
Early vascular aging has its origins in fetal and neonatal life. The NEOVASC clinical trial aims to determine the effects of an exclusive human milk diet in extremely preterm infants on long-term cardiovascular health.
This study is designed to allow cord blood sample collection from the cords of babies born in three gestational age windows: ≥37 gestational weeks, 32-36+6 gestational weeks and less than 32 gestational weeks to investigate whether the result obtained using a standard hSBA assay is comparable to that achieved using complement from a gestation matched population for meningococcal B and pertussis.
Despite significant improvement in preterm infant survival, the incidence of bronchopulmonary dysplasia (BPD) in infants born < 28 weeks gestational age (GA) has been relatively stable at ~40%, with 10,000-15,000 new cases estimated annually. Delivery room (DR) management of preterm infants during the initial resuscitation has a significant impact on future development of BPD. Current DR practice as recommended by the Neonatal Resuscitation Program (NRP), focuses on providing positive pressure ventilation (PPV) for intubated infants based on pressure limited ventilation (PLV). But with rapidly changing pulmonary compliance during the early newborn period, PLV may lead to under or over inflation of the lungs and induce significant volutrauma, barotrauma and/or atelectotrauma, all of which are associated in the pathogenesis of BPD. No studies have specifically reported tidal volume (TV) provided in the DR in intubated infants with current PLV practices. Similarly, no study has evaluated the safety and efficacy of volume targeted ventilation (VTV) in the DR and its impact on BPD. With the proposed study, in Phase I, the investigators aim to demonstrate that measuring TV in intubated infants receiving PPV via PLV is feasible. The investigators also seek to demonstrate that with PLV, TV is highly variable in the first few hours of life, even with the same peak inspiratory pressures (PiP) due to rapidly changing pulmonary compliance. A successful Phase I will demonstrate that measuring TV is feasible in the DR, and with information on real time actual TV achieved during PPV, it is possible to target the TV for a goal TV by adjusting the PiP provided. Phase II will be a pilot randomized control trial to demonstrate feasibility of VTV compared to PLV. The investigators will also aim to understand the pulmonary mechanics and physiology during VTV. A successful Phase II will demonstrate VTV is feasible, is associated with stable TV, decreased peak inspiratory pressure and oxygen needs compared to PLV, and not associated with increased complications compared to PLV. It will thereby justify a larger randomized control trial with enough power to evaluate the efficacy of VTV in reducing BPD and other long term pulmonary morbidities for preterm infants.
This study will evaluate the effect of skin antisepsis and/or emollient therapy on bacterial colonization dynamics in very low birth weight, hospitalized infants. Bacterial swabs from 5 body sites will be collected at baseline, day 3, day 8 and day 13 following study arm assignment. Study outcomes include changes in bacterial colony counts, burden of gram-negative and gram-positive pathogens and overall skin score.
The fatty acid composition in blood and subcutaneous adipose tissue of infants that have an clinical indicated operation is studied.
Centralisation of neonatal intensive care has led to an increase in postnatal inter-hospital transfers within the first 72 hours of life. Studies have shown transported preterm infants have an increased risk of intraventricular haemorrhage compared to inborns. The cause is likely multi-factorial, however, during the transportation process infants are exposed to noxious stimuli (excessive noise, vibration and temperature fluctuations), which may result in microscopic brain injury. However, there is a paucity of evidence to evaluate the effect of noise and vibration exposure during transportation. In this study the investigators aim to quantify the level of vibration and noise as experienced by a preterm infant during inter-hospital transportation in ground ambulance in the United Kingdom Secondary aims of the study are to: i) measure the physiological and biochemical changes that occur as a result of ambulance transportation (ii) quantify microscopic brain injury through measurement of urinary S100B and other biomarkers (iii) evaluate the development of intraventricular haemorrhage on cranial ultrasound iv) monitor vibration and sound exposure, using a prototype measuring system, during neonatal transport using both a manikin and a small cohort of neonatal patients. v) evaluate vibration and sound exposure levels using an updated transportation system modified to reduce effects.
To investigate whether there is a relationship between sepsis and blood groups in preterm infants.This retrospective cohort study included preterm neonates born at <32 weeks of gestation with a birth weight <1500 g. Neonates were grouped by blood type (O, A, B, AB) and sepsis were compared among these groups.
This study evaluate the incidence of sleep disorders in parents of premature children hospitalized in unit care of neonatalogy or intensive unit care of neonatalogy, compared to parents of full-term child in maternity.