View clinical trials related to Preleukemia.
Filter by:Phase II open-label single-arm prospective multicentric clinical trial of PF-05212384 (PKI-587) delivered by intravenous route. A 2-stage Fleming design will be employed.
Allogeneic transplant can sometimes be an effective treatment for leukemia. In a traditional allogeneic transplant, patients receive very high doses of chemotherapy and/or radiation therapy, followed by an infusion of their donor's bone marrow or blood stem cells. The high-dose chemotherapy drugs and radiation are given to remove the leukemia cells in the body. The infusion of the donor's bone marrow or blood stem cells is given to replace the diseased bone marrow destroyed by the chemotherapy and/or radiation therapy. However, there are risks associated with allogeneic transplant. Many people have life-threatening or even fatal complications, like severe infections and a condition called graft-versus-host disease, which is caused when cells from the donor attack the normal tissue of the transplant patient. Recently, several hospitals around the world have been using a different type of allogeneic transplant called a microtransplant. In this type of transplant, the donor is usually a family member who is not an exact match. In a microtransplant, leukemia patients get lower doses of chemotherapy than are used in traditional allogeneic transplants. The chemotherapy is followed by an infusion of their donor's peripheral blood stem cells. The objective of the microtransplant is to suppress the bone marrow by giving just enough chemotherapy to allow the donor cells to temporarily engraft (implant), but only at very low levels. The hope is that the donor cells will cause the body to mount an immunologic attack against the leukemia, generating a response called the "graft-versus-leukemia" effect or "graft-versus-cancer" effect, without causing the potentially serious complication of graft-versus-host disease. With this research study, the investigators hope to find out whether or not microtransplantation will be a safe and effective treatment for children, adolescents and young adults with relapsed or refractory hematologic malignancies
This phase I trial studies the side effects and best dose of WEE1 inhibitor AZD1775 and belinostat when given together in treating patients with myeloid malignancies that have returned after a period of improvement or have not responded to previous treatment or patients with untreated acute myeloid leukemia. WEE1 inhibitor AZD1775 and belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
The purpose of this study is to determine the maximum tolerated dose, dose limiting side effects, and the safety of increasing doses of lenalidomide in patients with AML and MDS who have a small amount of detectable disease after allogeneic stem cell transplant.
This is a pilot study which will be done in a small number of patients. The purpose of this study is to test the safety and benefit of giving a type of chemotherapy - cyclophosphamide - after the transplant to prevent graft versus host disease (GVHD) in patients with abnormal kidney function. GVHD is one of the most common complications of a stem cell transplant .
This study will take place in parts: - Dose Escalation (Part 1): Participants receive milademetan alone with different dose schedules - Dose Escalation (Part 1A): Participants receive milademetan in combination with 5-azacytidine (AZA), with different dose schedules The recommended dose for Part 2 will be selected. - Dose Expansion (Part 2): After Part 1A, participants will receive the recommended Part 2 dose schedule. There will be three groups - those with: 1. refractory or relapsed acute myelogenous leukemia (AML) 2. newly diagnosed AML unfit for intensive chemotherapy 3. high-risk myelodysplastic syndrome (MDS) - End-of-Study Follow-Up: Safety information will be collected until 30 days after the last treatment. This is the end of the study. The recommended dose for the next study will be selected.
The goal of this clinical research study is to learn if ixazomib can prevent AML or MDS from coming back in patients who are in remission. The safety of this drug will also be studied.
This study is being done to evaluate the safety and effectiveness of APTO-253 for the treatment of patients with the condition of acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS) for which either the standard treatment has failed, is no longer effective, or can no longer be administered safely or poses a risk for your general well being.
This pilot phase II trial studies how well a new reduced intensity conditioning regimen that includes haploidentical donor NK cells followed by the infusion of selectively T-cell depleted progenitor cell grafts work in treating younger patients with hematologic malignancies that have returned after or did not respond to treatment with a prior transplant. Giving chemotherapy and natural killer cells before a donor progenitor cell transplant may help stop the growth of cells in the bone marrow, including normal blood-forming cells (progenitor cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's cells. When the healthy progenitor cells from a related donor are infused into the patient they make red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Removing specific T cells from the donor cells before the transplant may prevent this.
The purpose of the study is to test the safety of six cycles of cenersen treatment and to begin to test the hypothesis that intermittent administration of cenersen may lead to a reduced dependence on transfusion.