View clinical trials related to Preleukemia.
Filter by:This phase II trials studies the effect of treosulfan-based versus clofarabine-based conditioning regimens before donor hematopoietic stem cell transplant in treating patients with myelodysplastic syndromes or acute myeloid leukemia. Chemotherapy drugs, such as treosulfan, fludarabine, and clofarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy and total-body irradiation before a donor hematopoietic stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells. This study may help doctors determine whether treosulfan-based or clofarabine-based conditioning regimen works better before donor hematopoietic stem cell transplant in treating patients with myelodysplastic syndromes or acute myeloid leukemia.
The main aim of the study is to see if signs and symptoms of myelodysplastic syndromes disappear when treated with pevonedistat combined with decitabine and cedazuridine. Participants will receive an infusion of pevonedistat 3 times during a 28-day cycle. They will also take decitabine and cedazuridine tablets once a day for the first 5 days of the same cycle. A minimum of 6 28-day cycles is recommended, but participants can stop treatment at any time. A bone marrow biopsy, bone marrow aspirates, and blood samples will be collected during the study. Participants will attend a follow-up visit 30 days after their last dose of pevonedistat. Once treatment has ended, participants will be followed up with either monthly clinic visits or will be contacted every 3 months.
This research is being done to see if the drug Inqov is effective in reducing the chance of myelodysplastic syndrome (MDS) or chronic myelomonocytic leukemia (CMML) relapsing after standard of care stem cell transplant. - This research study involves the study drug Inqovi, which is a combination of the drugs decitabine and cedazuridine.
This is a non-interventional post-authorization safety study (PASS) employing a cross sectional design to evaluate the effectiveness of the additional risk minimization measures (aRMMs) for REBLOZYL. A survey will be used to measure the knowledge and comprehension of the REBLOZYL aRMMs among European Economic Area (EEA) based healthcare professionals (HCPs). The PASS will be conducted among HCPs in a representative sample of EEA countries where REBLOZYL is commercially available, potentially including Austria, Germany, Italy, Norway, Sweden, the Netherlands, Poland, and Spain. Additional EEA countries may be included, as needed, based on commercial availability and reimbursement status.
This study assesses feasibility and patient acceptability of using a Fitbit to monitor step count and heart rate in transfusion dependent patients with myelodysplastic syndrome. Information from this study may help researchers understand if there is any correlation between activity level and anemia.
This research study is a genomic profiling and repository study for children and young adults who have leukemia, myelodysplastic syndrome (MDS) or myeloproliferative syndrome (MPS). Genes are the part of cells that contain the instructions which tell cells how to make the right proteins to grow and work. Genes are composed of DNA letters that spell out these instructions. Genomic profiling helps investigators understand why the disease develops and the instructions that led to its development. Understanding the genetic factors of the disease can also help investigator understand why the disease of some people can respond to certain therapies differently than others. The genomic profiling will be performed using bone marrow and blood samples that either have already been obtained during a previous clinical procedure or will be obtained at the time of a scheduled clinical procedure. Studying the genetic information in the cells of these samples will provide information about the origin, progression, and treatment of leukemia and myeloproliferative syndromes and myelodysplastic syndrome. Storing the bone marrow and blood samples will allow for additional research and genomic assessments to be performed in the future.
Study CC-91633-AML-001 is a Phase 1, open-label, dose escalation and expansion, first-in-human (FIH) clinical study of CC-91633 (BMS-986397) in participants with relapsed or refractory acute myeloid leukemia (R/R AML) or in participants with relapsed or refractory higher-risk myelodysplastic syndromes (R/R HR-MDS). The Dose Escalation part (Part A) of the study will enroll participants with R/R AML and R/R HR-MDS and will evaluate the safety and tolerability of escalating doses of CC-91633 (BMS-986397), administered orally, and determine the maximum tolerated dose (MTD) or preliminary recommended Phase 2 dose (RP2D) and schedule. Throughout the study, final decisions on dose escalation/de-escalation will be made by the safety review committee (SRC). Approximately 40 participants may be enrolled in Part A of the study. The expansion part (Part B) will confirm tolerability of the selected doses and schedules and evaluate whether efficacy is in a range that warrants further clinical development. Separate expansion cohorts for participants with R/R AML and R/R HR-MDS may enroll approximately 20 to 40 response evaluable participants per cohort. Parts A and B will consist of 3 periods: Screening, Treatment, and Follow-up.
This study will be divided into two parts, Parts A and B and will enroll patients with relapsed/refractory AML or MDS/chronic myelomonocytic leukemia (CMML) patients who have failed up to 2 prior therapeutic regimens. Part A is a dose escalation study to explore the safety, efficacy, pharmacokinetic (PK) and pharmacodynamic (PD) profile of DSP107 when administered in combination with azacitidine (AZA). Part B is a dose escalation study to explore the safety, efficacy, PK and PD profile of DSP107 when administered in combination with AZA and venetoclax (VEN).
Acute myeloid leukemia (AML) is one of the most aggressive blood cancers, with a very low survival rate and few options for participants who are unable to undergo intensive chemotherapy, the current standard of care. This study is to evaluate how safe lemzoparlimab is and how it moves within the body when used along with azacitidine and/or venetoclax in adult participants with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Adverse events and maximum tolerated dose (MTD) of lemzoparlimab will be assessed. Lemzoparlimab (TJ011133) is being evaluated in combination with azacitidine and venetoclax for the treatment of acute myeloid leukemia (AML) and with azacitidine with/without venetoclax for myelodysplastic syndrome (MDS). Study doctors place the participants in 1 of 5 groups, called treatment arms. Each group receives a different treatment. Adult participants with a diagnosis of AML or MDS will be enrolled. Around 80 participants will be enrolled in the study in approximately 50 sites worldwide. Participants will receive lemzoparlimab (IV) once weekly (Q1W), venetoclax oral tablets once daily (QD) for 28 days (AML participants) or 14 days (MDS participants) and Azacitidine by SC or IV route QD for 7 days of each 28-day cycle. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests and checking for side effects.
To evaluate the safety and effectiveness of Sodium Stibogluconate in the treatment of myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) with p53 mutation from a defined list. The list includes 65 p53 mutations that were experimentally confirmed to be pharmacologically restored with tumor-suppressive function by antimonials.