View clinical trials related to Preclinical Alzheimer's Disease.
Filter by:The primary objective of the study is to evaluate whether a set of algorithms analysing acoustic and linguistic patterns of speech, can predict change in Preclinical Alzheimer's Clinical Composite with semantic processing (PACC5) between baseline and +12 month follow up across all four Arms, as measured by the coefficient of individual agreement (CIA) between the change in PACC5 and the corresponding regression model, trained on baseline speech data to predict it. Secondary objectives include (1) evaluating whether similar algorithms can predict change in PACC5 between baseline and +12 month follow up in the cognitively normal (CN) and MCI populations separately; (2) evaluating whether similar algorithms trained to regress against PACC5 scores at baseline, still regress significantly against PACC5 scores at +12 month follow-up, as measured by the coefficient of individual agreement (CIA) between the PACC5 composite at +12 months and the regression model, trained on baseline speech data to predict PACC5 scores at baseline; (3) evaluating whether similar algorithms can classify converters vs non-converters in the cognitively normal Arms (Arm 3 + 4), and fast vs slow decliners in the MCI Arms (Arm 1 + 2), as measured by the Area Under the Curve (AUC) of the receiver operating characteristic curve, sensitivity, specificity and Cohen's kappa of the corresponding binary classifiers. Secondary objectives include the objectives above, but using time points of +24 months and +36 months; and finally to evaluate whether the model performance for the objectives and outcomes above improved if the model has access to speech data at 1 week, 1 month, and 3 month timepoints.
The primary objective of the study is to evaluate whether a set of algorithms analysing acoustic and linguistic patterns of speech, can predict change in PACC5 between baseline and +12 month follow up across all four Arms, as measured by the coefficient of individual agreement (CIA) between the change in PACC5 and the corresponding regression model, trained on baseline speech data to predict it. Secondary objectives include (1) evaluating whether similar algorithms can predict change in PACC5 between baseline and +12 month follow up in the cognitively normal (CN) and MCI populations separately; (2) evaluating whether similar algorithms trained to regress against PACC5 scores at baseline, still regress significantly against PACC5 scores at +12 month follow-up, as measured by the coefficient of individual agreement (CIA) between the PACC5 composite at +12 months and the regression model, trained on baseline speech data to predict PACC5 scores at baseline; (3) evaluating whether similar algorithms can classify converters vs non-converters in the cognitively normal Arms (Arm 3 + 4), and fast vs slow decliners in the MCI Arms (Arm 1 + 2), as measured by the AUC, sensitivity, specificity and Cohen's kappa of the corresponding binary classifiers. Secondary objectives include the objectives above, but using time points of +24 months and +36 months; and finally to evaluate whether the model performance for the objectives and outcomes above improved if the model has access to speech data at 1 week, 1 month, and 3 month timepoints.