Clinical Trials Logo

Clinical Trial Summary

Ketamine effect on isoflurane anesthesia This study is designed to study the effect of ketamine on isoflurane anesthesia. As both drugs are hypnotic and are used to cause sleep during surgery and other painful procedures, it was long believed that the actions of two drugs add to each other. For example if a man received both drugs, this man will become awake from anesthesia much later than if this man was given either of them alone.

However recent studies showed that this is not the case and ketamine can cause fast recovery from hypnotic effects of isoflurane. This was confirmed in animals.

The aim of current study is to investigate if this effect applies for humans, using a state of art brain monitoring device in wide use nowadays called BIS or bispectral index. This device can also shed some light on how ketamine can cause, if any, fast recovery from isoflurane anesthesia. Simply, by studying electrical wave coming from brain to head skin.


Clinical Trial Description

In an animal study, the authors found that intraperitoneal injection of a sub-anesthetic dose of ketamine amidst isoflurane anesthesia in rats induced early recovery. A finding the authors explained, to be due to increased NMDA mediated increase of acetyl choline secretion in the prefrontal area of rats' brains. This rise, in the authors opinion, antagonized the GABA mediated isoflurane anesthesia resulting in hastened recovery. Meanwhile, the authors found association between hastened recovery and increased Electroencephalographic gamma (EEG γ) wave fronto-parietal projection. This is compatible with cognitive unbinding explanation of unconsciousness during anesthesia.

In current proposed study, the investigator will examine tow hypothesis:

Recovery time:

If the recovery hastening effect of sub anesthetic ketamine on recovery from isoflurane anesthesia is also present in human patients. The assumption will be that ketamine either prolong or has no effect on recovery time from isoflurane anesthesia. The claim well be that ketamine will decrease the recovery time.

Put in statistical terms:

H0: recovery with ketamine ≥ recovery without ketamine. H1: recovery with ketamine ˂ recovery without ketamine. 2. EEG (γ) wave activity: As the investigator will record EEG activity during the procedure via Bispectral monitor, the investigator will analyze the records for presence of enhanced (γ) activity during recovery. the investigator aim is also to detect any significant difference in (γ) wave amplitude or other characteristics between isoflurane only and ketamine group.

The assumption will be that (γ) activity will either show no difference between the two groups or be lower than in ketamine group than isoflurane group during recovery. The claim will be increased (γ) activity with ketamine group during recovery.

Put in statistical terms:

H0: (γ) activity with ketamine ≤ isoflurane only. H1: (γ) activity with ketamine > isoflurane only. N.P: as the sampling frequency of EEG data exported from BIS Vista is 128Hz, the upper limit of the current study of (γ) activity will necessarily be 64Hz.

Sample size calculation:

the mean measured variable of the current study will be the recovery time. Recovery time will be defined as the time between stop of isoflurane inhalation until recovery of verbal response to name called every 30 seconds. A 30% reduction in recovery time in ketamine group as compared with isoflurane is considered to be statically significant enough to reject the null hypothesis of recovery time. According to one study , recovery time from isoflurane only anesthesia is around 12 minutes so the sample size calculation will be as following:

Equation:

n>((ᶻ "1- α ̸2" +ᶻ"1-β" )"2" σ"2" )/δ"2" Where n = sample size required for each group, ᶻ "1-α" = the value for the standard normal distribution for (1-α̸2) percentile, ᶻ "1-β" =the standard normal distribution for 100(1-β) percentile, δ"2" = the difference to detect, σ"2" = the variance in the underling 2 population. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03290495
Study type Interventional
Source Minia University
Contact
Status Completed
Phase Phase 4
Start date September 30, 2017
Completion date November 25, 2017

See also
  Status Clinical Trial Phase
Recruiting NCT06430645 - Effects of Esketamine on Recovery of Consciousness After Propofol Anesthesia N/A
Completed NCT01567852 - Use of Ketamine vs Methohexital for Electroconvulsive Therapy (ECT) on Patient Recovery and Re-orientation Time N/A